1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
The role of the exchange in the embedding electrostatic potential for the fragment molecular orbital method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/17/10.1063/1.3250349
1.
1.M. Kamiya, S. Hirata, and M. Valiev, J. Chem. Phys. 128, 074103 (2008).
http://dx.doi.org/10.1063/1.2828517
2.
2.W. Hua, T. Fang, W. Li, J. -G. Yu, and S. Li, J. Phys. Chem. A 112, 10864 (2008).
http://dx.doi.org/10.1021/jp8026385
3.
3.A. P. Rahalkar, V. Ganesh, and S. R. Gadre, J. Chem. Phys. 129, 234101 (2008).
http://dx.doi.org/10.1063/1.2978387
4.
4.J. He, C. Di Paola, and L. Kantorovich, J. Chem. Phys. 130, 144104 (2009).
http://dx.doi.org/10.1063/1.3106661
5.
5.P. Söderhjelm and U. Ryde, J. Phys. Chem. A 113, 617 (2009).
http://dx.doi.org/10.1021/jp8073514
6.
6.V. Pomogaev, A. Pomogaeva, and Y. Aoki, J. Phys. Chem. A 113, 1429 (2009).
http://dx.doi.org/10.1021/jp808262h
7.
7.W. Xie, M. Orozco, D. G. Truhlar, and J. Gao, J. Chem. Theory Comput. 5, 459 (2009).
http://dx.doi.org/10.1021/ct800239q
8.
8.H. R. Leverentz and D. G. Truhlar, J. Chem. Theory Comput. 5, 1573 (2009).
http://dx.doi.org/10.1021/ct900095d
9.
9.E. Suárez, N. Díaz, and D. Suárez, J. Chem. Theory Comput. 5, 1667 (2009).
http://dx.doi.org/10.1021/ct8005002
10.
10.M. S. Gordon, J. M. Mullin, S. R. Pruitt, L. B. Roskop, L. V. Slipchenko, and J. A. Boatz, J. Phys. Chem. B 113, 9646 (2009).
http://dx.doi.org/10.1021/jp811519x
11.
11.K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi, Chem. Phys. Lett. 313, 701 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00874-X
12.
12.D. G. Fedorov and K. Kitaura, J. Phys. Chem. A 111, 6904 (2007).
http://dx.doi.org/10.1021/jp0716740
13.
13.The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems, edited by D. G. Fedorov and K. Kitaura (CRC, Boca Raton, FL, 2009).
14.
14.D. G. Fedorov and K. Kitaura, J. Chem. Phys. 120, 6832 (2004).
http://dx.doi.org/10.1063/1.1687334
15.
15.D. G. Fedorov and K. Kitaura, J. Chem. Phys. 121, 2483 (2004).
http://dx.doi.org/10.1063/1.1769362
16.
16.D. G. Fedorov and K. Kitaura, J. Chem. Phys. 122, 054108 (2005).
http://dx.doi.org/10.1063/1.1835954
17.
17.Y. Mochizuki, S. Koikegami, S. Amari, K. Segawa, K. Kitaura, and T. Nakano, Chem. Phys. Lett. 406, 283 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.03.008
18.
18.D. G. Fedorov and K. Kitaura, J. Chem. Phys. 123, 134103 (2005).
http://dx.doi.org/10.1063/1.2007588
19.
19.M. Chiba, D. G. Fedorov, T. Nagata, and K. Kitaura, Chem. Phys. Lett. 474, 227 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.04.057
20.
20.D. G. Fedorov and K. Kitaura, J. Comput. Chem. 28, 222 (2007).
http://dx.doi.org/10.1002/jcc.20496
21.
21.D. G. Fedorov, T. Ishida, M. Uebayasi, and K. Kitaura, J. Phys. Chem. A 111, 2722 (2007).
http://dx.doi.org/10.1021/jp0671042
22.
22.Y. Komeiji, Y. Mochizuki, T. Nakano, and D. G. Fedorov, J. Mol. Struct.: THEOCHEM 898, 2 (2009).
http://dx.doi.org/10.1016/j.theochem.2008.07.001
23.
23.K. Yasuda and D. Yamaki, J. Chem. Phys. 125, 154101 (2006).
http://dx.doi.org/10.1063/1.2358978
24.
24.Y. Inadomi, T. Nakano, K. Kitaura, and U. Nagashima, Chem. Phys. Lett. 364, 139 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01291-5
25.
25.H. Sekino, Y. Sengoku, S. -I. Sugiki, and N. Kurita, Chem. Phys. Lett. 378, 589 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)01332-0
26.
26.T. Watanabe, Y. Inadomi, H. Umeda, K. Fukuzawa, S. Tanaka, T. Nakano, and U. Nagashima, J. Comput. Theor. Nanosci. 6, 1328 (2009).
http://dx.doi.org/10.1166/jctn.2009.1182
27.
27.S. Tsuneyuki, T. Kobori, K. Akagi, K. Sodeyama, K. Terakura, and H. Fukuyama, Chem. Phys. Lett. 476, 104 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.05.069
28.
28.D. G. Fedorov, J. H. Jensen, R. C. Deka, and K. Kitaura, J. Phys. Chem. A 112, 11808 (2008).
http://dx.doi.org/10.1021/jp805435n
29.
29.See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3250349 for the details of the derivations (e.g., the definition of the virial ratio in FMO and the total energy in FMO/F).[Supplementary Material]
30.
30.M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
31.
31.D. G. Fedorov, R. M. Olson, K. Kitaura, M. S. Gordon, and S. Koseki, J. Comput. Chem. 25, 872 (2004).
http://dx.doi.org/10.1002/jcc.20018
32.
32.T. Nakano, T. Kaminuma, T. Sato, K. Fukuzawa, Y. Akiyama, M. Uebayasi, and K. Kitaura, Chem. Phys. Lett. 351, 475 (2002).
http://dx.doi.org/10.1016/S0009-2614(01)01416-6
33.
33.D. G. Fedorov and K. Kitaura, Chem. Phys. Lett. 433, 182 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.10.052
34.
34.P. V. Avramov, D. G. Fedorov, P. B. Sorokin, L. A. Chernozatonskii, and S. G. Ovchinnikov, J. Appl. Phys. 104, 054305 (2008).
http://dx.doi.org/10.1063/1.2973464
35.
35.A. Pomogaeva, M. Springborg, B. Kirtman, F. L. Gu, and Y. Aoki, J. Chem. Phys. 130, 194106 (2009).
http://dx.doi.org/10.1063/1.3131262
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/17/10.1063/1.3250349
Loading
/content/aip/journal/jcp/131/17/10.1063/1.3250349
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/17/10.1063/1.3250349
2009-11-06
2015-03-07

Abstract

We have examined the role of the exchange in describing the electrostatic potential in the fragment molecular orbital method and showed that it should be included in the total Fock matrix to obtain an accurate one-electron spectrum; however, adding it to the Fock matrices of individual fragments and pairs leads to very large errors. For the error analysis we have used the virial theorem; numerical tests have been performed for solvated phenol at the Hartree–Fock level with the and basis sets.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/17/1.3250349.html;jsessionid=cht79q6ci6nk.x-aip-live-02?itemId=/content/aip/journal/jcp/131/17/10.1063/1.3250349&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The role of the exchange in the embedding electrostatic potential for the fragment molecular orbital method
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/17/10.1063/1.3250349
10.1063/1.3250349
SEARCH_EXPAND_ITEM