1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Universal perturbative explicitly correlated basis set incompleteness correction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/17/10.1063/1.3254836
1.
1.W. Klopper, F. R. Manby, S. Ten-No, and E. F. Valeev, Int. Rev. Phys. Chem. 25, 427 (2006).
http://dx.doi.org/10.1080/01442350600799921
2.
2.E. F. Valeev, Phys. Chem. Chem. Phys. 10, 106 (2008).
http://dx.doi.org/10.1039/b713938a
3.
3.T. B. Adler, G. Knizia, and H. -J. Werner, J. Chem. Phys. 127, 221106 (2007).
http://dx.doi.org/10.1063/1.2817618
4.
4.D. P. Tew, W. Klopper, C. Neiss, and C. Hattig, Phys. Chem. Chem. Phys. 9, 1921 (2007).
http://dx.doi.org/10.1039/b617230j
5.
5.D. Bokhan, S. Bernadotte, and S. Ten-no, J. Chem. Phys. 469, 214 (2009).
6.
6.R. J. Gdanitz, Chem. Phys. Lett. 210, 253 (1993).
http://dx.doi.org/10.1016/0009-2614(93)89130-A
7.
7.S. Ten-no, Chem. Phys. Lett. 447, 175 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.09.006
8.
8.D. Mukherjee, Chem. Phys. Lett. 274, 561 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00714-8
9.
9.W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432 (1997).
http://dx.doi.org/10.1063/1.474405
10.
10.W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94, 1985 (1991).
http://dx.doi.org/10.1063/1.459921
11.
11.W. Klopper and C. C. M. Samson, J. Chem. Phys. 116, 6397 (2002).
http://dx.doi.org/10.1063/1.1461814
12.
12.E. F. Valeev and C. L. Janssen, J. Chem. Phys. 121, 1214 (2004).
http://dx.doi.org/10.1063/1.1759319
13.
13.M. Torheyden and E. F. Valeev, Phys. Chem. Chem. Phys. 10, 3410 (2008).
http://dx.doi.org/10.1039/b803620a
14.
14.W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 110, 2800 (1999).
http://dx.doi.org/10.1063/1.478189
15.
15.W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 120, 7350 (2004).
http://dx.doi.org/10.1063/1.1652490
16.
16.S. Ten-no, J. Chem. Phys. 121, 117 (2004).
http://dx.doi.org/10.1063/1.1757439
17.
17.E. F. Valeev, J. Chem. Phys. 125, 244106 (2006).
http://dx.doi.org/10.1063/1.2403852
18.
18.E. F. Valeev, Chem. Phys. Lett. 395, 190 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.061
19.
19.S. Kedžuch, M. Milko, and J. Noga, Int. J. Quantum Chem. 105, 929 (2005).
http://dx.doi.org/10.1002/qua.20744
20.
20.S. Ten-No, Chem. Phys. Lett. 398, 56 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.041
21.
21.A. K. Wilson, T. v. Mourik, and T. H. Dunning, J. Mol. Struct.: THEOCHEM 388, 339 (1997).
22.
22.R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
23.
23.T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639 (1997).
http://dx.doi.org/10.1063/1.473863
24.
24.C. L. Janssen, I. B. Nielsen, M. L. Leininger, E. F. Valeev, and E. T. Seidl, The Massively Parallel Quantum Chemistry Program (MPQC): Version 3.0 (alpha) (Sandia National Laboratories, Livermore, 2009).
25.
25.T. D. Crawford, C. D. Sherrill, E. F. Valeev, J. T. Fermann, R. A. King, M. L. Leininger, S. T. Brown, C. L. Jannssen, E. T. Seidl, J. P. Kenny, and W. D. Allen, J. Comput. Chem. 28, 1610 (2007).
http://dx.doi.org/10.1002/jcc.20573
26.
26.M. E. Harding, J. Vázquez, B. Ruscic, A. K. Wilson, J. Gauss, and J. F. Stanton, J. Chem. Phys. 128, 114111 (2008).
http://dx.doi.org/10.1063/1.2835612
27.
27.T. Helgaker, P. Jørgensen, and J. Olsen, Modern Electronic Structure Theory, 1st ed. (Wiley, Chichester, 2000).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/17/10.1063/1.3254836
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

MRCI correlation energy for the hydrogen fluoride molecule computed with the conventional and approaches.

Image of FIG. 2.

Click to view

FIG. 2.

MRCI correlation energy for the nitrogen molecule computed with the conventional and approaches.

Tables

Generic image for table

Click to view

Table I.

The electronic dissociation energies of the HF and molecules (kJ/mol) [Dissociation energies computed as difference of the molecular energies for the HF molecule and for the molecule.]

Loading

Article metrics loading...

/content/aip/journal/jcp/131/17/10.1063/1.3254836
2009-11-04
2014-04-16

Abstract

Basis set incompleteness error for an arbitrary approximate electronic wave function is robustly reduced using a second-order perturbative correction into a basis of explicitly correlated, internally contracted geminal functions. The Hylleraas functional for the second-order energy correction is evaluated algebraically involving at most a four-electron reduced density matrix and four-electron integrals. By using the R12 technology in combination with screening approximations such a correction only requires a two-electron reduced density matrix and two-electron integrals. Preliminary investigations of potential energy surfaces of hydrogen fluoride and nitrogen molecules at the multireference configuration interaction singles and doubles indicate that with the perturbative correction only an aug-cc-pVDZ basis is necessary to compute correlationenergies of an aug-cc-pVQZ quality, or better. The proposed correction, dubbed , can in principle be combined with any single reference and multireference method in use today.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/17/1.3254836.html;jsessionid=1i5rsmaqgpprk.x-aip-live-06?itemId=/content/aip/journal/jcp/131/17/10.1063/1.3254836&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Universal perturbative explicitly correlated basis set incompleteness correction
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/17/10.1063/1.3254836
10.1063/1.3254836
SEARCH_EXPAND_ITEM