banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Relaxation of Voronoi shells in hydrated molecular ionic liquids
Rent this article for


Image of FIG. 1.
FIG. 1.

Duality of Voronoi and Delaunay tessellations. In this simplistic scheme, four points (A, B, C, D) are connected via their Delaunay (red, dashed-dotted) and Voronoi (green, dashed) diagrams. The two diagrams are dual, i.e., can be converted into each other without any further information. By connecting all points that share a common Voronoi face, the Delaunay diagram can be drawn. For example, points C and D share the common Voronoi face x-y (green) and are thus connected in the Delaunay diagram (red). The Voronoi nodes (x,y), in turn, coincide with the centers of Delaunay circumcircles. Given a Delaunay tessellation, the Voronoi nodes, e.g., x and y in the figure, are obtained in the following way. In two dimensions for each triangle, e.g., A-C-D, a circumcircle can be constructed. Its center coincides with the vertex x of a Voronoi polygon. In the three dimensional case a Voronoi vertex is identical to the center of the Delaunay tetrahedron’s circumsphere.

Image of FIG. 2.
FIG. 2.

Proximity criterion. The two water molecules are both members of the first shell of the BMIM molecule but are assigned to two different states. The distance between water molecule A and the BMIM molecule is shortest at the butyl-terminal methyl group, thus molecule A is populating state seven of an eight state C-W matrix. Water molecule B is populating state four, as its proximity is maximal with respect to butyl hydrogen .

Image of FIG. 3.
FIG. 3.

Residence correlation function for C-all of the system with (red solid line). The respective fit to a KWW function is given as a green dashed line. Please note the logarithmic time scale. The short time and long time limits are 26.3 and 1.02. This means that in the beginning the cation is surrounded by 26 other molecules of all three species. After 10 ns 25 particles have migrated from the cation, but one is still a resident.

Image of FIG. 4.
FIG. 4.

Plot of the system specific MRT vs the respective viscosity . The logarithmic stretching of both axes was chosen in order to cope with the wide spread of viscosity values. The three systems are denoted by red squares, the systems by blue circles.

Image of FIG. 5.
FIG. 5.

The dominant C-all Markov residence time is plotted vs the viscosity as a representative of the respective system. The three systems are denoted by red squares, the systems by blue circles. The straight line symbolizes the relation . Due to the wide spread of viscosity values a logarithmic scale stretching is used.

Image of FIG. 6.
FIG. 6.

The dominant Markov residence time resolved for all 25 proximity sites of . Three combinations BMIM-BMIM (red diamonds), BMIM-TFB (green circles), and BMIM-water (blue squares).

Image of FIG. 7.
FIG. 7.

Modeling the simulated by the probabilistic approach for the case of with . The solid green line stands for the time evolution of the net shell population . The underlying transition matrix is for . The universal stretch parameter is . The residence correlation function is displayed as blue circles.


Generic image for table
Table I.

Composition and coordination of the simulated MIL/water mixtures.

Generic image for table
Table II.

Relaxation KWW parameters as obtained from the fit of the residence autocorrelation function .

Generic image for table
Table III.

Collection of relaxation amplitudes. The results from the KWW fit are compared with those from the Markovian master equation.


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Relaxation of Voronoi shells in hydrated molecular ionic liquids