1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Tribology of the lubricant quantized sliding state
Rent:
Rent this article for
USD
10.1063/1.3257738
/content/aip/journal/jcp/131/17/10.1063/1.3257738
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/17/10.1063/1.3257738
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

A sketch of the model with the rigid top (solid circles) and bottom (open) crystalline sliders (of lattice spacing and , respectively), the former moving at externally imposed -velocity . One or more solid lubricant layers (shadowed) of rest equilibrium spacing are confined in between.

Image of FIG. 2.
FIG. 2.

The time-averaged velocity ratio of a single lubricant layer as a function of the adiabatically increased top-slider velocity for different temperatures of the Langevin thermostat [panel (a)] and for distinct degrees of quenched disorder in the bottom substrate [panel (b)]; atomic random displacements are taken in a uniform distribution in the interval horizontally and vertically away from the ideal positions of Eq. (4). All simulations are carried out with a model composed by 4, 29, and 25 atoms in the top lubricant and bottom layers respectively, with an applied load . The plateau velocity ratio (dot-dashed line) is [Eq. (11)].

Image of FIG. 3.
FIG. 3.

The critical depinning velocity for the breakdown of the quantized plateau as a function of the applied load per top-layer atom . For the one-layer curves, the same geometry as in Fig. 2, temperatures (circles) and 0.25 (diamonds) are considered. The two-layer curve (squares) is computed with a doubled number of lubricant atoms (58 rather than 29) confined between the same substrates in the same -range.

Image of FIG. 4.
FIG. 4.

Variation of the plateau boundary velocity as a function of the kink coverage for a lubricant monolayer and bilayer. Calculations show local maxima of for commensurate values of for both and 2; except at kink coverage is generally larger for than . Simulations are carried out with , , and .

Image of FIG. 5.
FIG. 5.

Variation of the plateau boundary velocity as a function of the kink coverage for a lubricant monolayer showing different interaction energies with the substrates. Simulations are carried out with the same conditions as in Fig. 4, but with varied , (but unchanged interparticle interaction ).

Image of FIG. 6.
FIG. 6.

Snapshot of the dynamically pinned state of the 2D lubricant, showing the bond lengths as a function of the bond horizontal position along the slider. Shorter bonds identify kink regions, while longer bonds belong to in-register regions. Larger interaction with the substrates favors the commensurate in-register region.

Image of FIG. 7.
FIG. 7.

Critical depinning velocity as a function of the numbers of lubricant layers. All simulations are carried out in a condition that favors the quantized-velocity sliding state: the model is composed by 4, , and 25 atoms in the top lubricant and bottom layers respectively (thus ), with an applied load and . The data show an optimal dynamical pinning at and a tendency for to drop considerably as the lubricant thickness increases beyond that value. For no quantized plateau could be detected.

Image of FIG. 8.
FIG. 8.

The tribological properties of the same model as in Fig. 2. As a function of the top-layer velocity adiabatically increased (circles) or decreased (squares) the three panels report: (a) the average velocity ratio , compared to the plateau value , Eq. (11); (b) the average friction force experienced by the top layer; and (c) the effective lubricant temperature, computed using the average kinetic energy in the frame of reference of the instantaneous lubricant CM [Eq. (23)].

Image of FIG. 9.
FIG. 9.

Results of a model composed by 4, 21, and 25 atoms in the top, lubricant and bottom chains, , which according to Eq. (11), produces perfectly quantized dynamics at a negative , a dot-dashed line in panel a: this backward lubricant motion is caused by forward-dragged antikinks. The other simulation parameters are , . As a function of the top-layer velocity adiabatically increased (circles) or decreased (squares) the three panels report: (a) the average velocity ratio ; (b) the average friction force experienced by the top layer; and (c) the effective lubricant temperature [Eq. (23)].

Image of FIG. 10.
FIG. 10.

The average velocity ratio as a function of the adiabatically increased (circles) or decreased (squares) top-layer velocity . The model parameters are the same as in Fig. 8, but with no thermal effects .

Image of FIG. 11.
FIG. 11.

The time evolution of the average velocity ratio and the corresponding kinetic friction for the four dynamical states [(a)–(d)] marked in Fig. 10. The first three panels, referring to quantized sliding states, display a typical intermittent stick-slip dynamics with small amplitude fluctuations; the last panel exhibits large chaotic jumps in both and , as typical of the “hot” high-speed nonquantized sliding. The dot-dashed lines highlight the quantized plateau value .

Loading

Article metrics loading...

/content/aip/journal/jcp/131/17/10.1063/1.3257738
2009-11-06
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tribology of the lubricant quantized sliding state
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/17/10.1063/1.3257738
10.1063/1.3257738
SEARCH_EXPAND_ITEM