1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Molecular rotor dynamics influenced by the elastic modulus of polyethylene nanocomposites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/17/10.1063/1.3261730
1.
1.D. R. Paul and L. M. Robeson, Polymer 49, 3187 (2008).
http://dx.doi.org/10.1016/j.polymer.2008.04.017
2.
2.R. A. Riggleman, G. Toepperwein, G. J. Papakonstantopoulos, J. -L. Barrat, and J. J. de Pablo, J. Chem. Phys. 130, 244903 (2009).
http://dx.doi.org/10.1063/1.3148026
3.
3.A. J. Peacock, Handbook of Polyethylene (Marcel Dekker, New York, 2000).
4.
4.D. Passeri, A. Bettucci, A. Biagioni, M. Rossi, A. Alippi, M. Lucci, I. Davoli, and S. Berezina, Rev. Sci. Instrum. 79, 066105 (2008).
http://dx.doi.org/10.1063/1.2949387
5.
5.D. Tranchida, S. Piccarolo, and M. Soliman, Macromolecules 39, 4547 (2006).
http://dx.doi.org/10.1021/ma052727j
6.
6.D. H. Waldeck, Chem. Rev. (Washington, D.C.) 91, 415 (1991).
http://dx.doi.org/10.1021/cr00003a007
7.
7.R. S. H. Liu and G. S. Hammond, Proc. Natl. Acad. Sci. U.S.A. 97, 11153 (2000).
http://dx.doi.org/10.1073/pnas.210323197
8.
8.G. J. Lee, D. Kim, and M. Lee, Appl. Opt. 34, 138 (1995).
http://dx.doi.org/10.1364/AO.34.000138
9.
9.F. Serra and E. M. Terentjev, J. Chem. Phys. 128, 224510 (2008).
http://dx.doi.org/10.1063/1.2937455
10.
10.J. Guthmuller and B. Champagne, J. Chem. Phys. 127, 164507 (2007).
http://dx.doi.org/10.1063/1.2790907
11.
11.M. A. Haidekker, T. Ling, M. Anglo, H. Y. Stevens, J. A. Frangos, and E. A. Theodorakis, Chem. Biol. 8, 123 (2001).
http://dx.doi.org/10.1016/S1074-5521(00)90061-9
12.
12.B. D. Allen, A. Benniston, S. A. Rostron, and C. Yu, Phys. Chem. Chem. Phys. 7, 3035 (2005).
http://dx.doi.org/10.1039/b507165h
13.
13.D. Zhu, M. A. Haidekker, J. S. Lee, Y. Y. Won, and C. M. Lee, Macromolecules 40, 7730 (2007).
http://dx.doi.org/10.1021/ma0702288
14.
14.A. S. Polo, M. K. Itokazu, K. M. Frin, A. O. Patrocinio, and N. Y. Iha, Coord. Chem. Rev. 250, 1669 (2006).
http://dx.doi.org/10.1016/j.ccr.2005.12.015
15.
15.U. K. Genick, S. M. Soltis, P. Kuhn, I. L. Canestrelli, and E. D. Getzoff, Nature (London) 392, 206 (1998).
http://dx.doi.org/10.1038/32462
16.
16.R. S. H. Liu and G. S. Hammond, Acc. Chem. Res. 38, 396 (2005).
http://dx.doi.org/10.1021/ar040246z
17.
17.G. Ponterini and M. Caselli, Ber. Bunsenges. Phys. Chem 96, 564 (1992).
18.
18.L. Scaffardi, R. E. Paolo, and R. Duchowicz, J. Photochem. Photobiol. A: Chem. 107, 185 (1997).
http://dx.doi.org/10.1016/S1010-6030(97)00026-9
19.
19.Z. S. Pillai, P. K. Sudeep, and K. G. Thomas, Res. Chem. Intermed. 29, 293 (2003).
http://dx.doi.org/10.1163/156856703764929958
20.
20.M. Rosenbluth, W. A. Lam, and D. A. Fletcher, Biophys. J. 90, 2994 (2006).
http://dx.doi.org/10.1529/biophysj.105.067496
21.
21.J. Rodriguez, D. Scherlis, D. Estrin, P. F. Aramendia, and R. M. Negri, J. Phys. Chem. A 101, 6998 (1997).
http://dx.doi.org/10.1021/jp9713569
22.
22.J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
23.
23.A. -Y. Jee, S. Park, H. Kwon, and M. Lee, Chem. Phys. Lett. 477, 112 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.06.088
24.
24.J. T. Edward, J. Chem. Educ. 47, 261 (1970).
25.
25.K. G. Yager, O. M. Tanchak, C. Godbout, H. Fritzsche, and C. J. Barrett, Macromolecules 39, 9311 (2006).
http://dx.doi.org/10.1021/ma0617320
26.
26.S. Takeuchi, S. Ruhman, T. Tsuneda, M. Chiba, T. Taketsugu, and T. Tahara, Science 322, 1073 (2008).
http://dx.doi.org/10.1126/science.1160902
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/17/10.1063/1.3261730
Loading
/content/aip/journal/jcp/131/17/10.1063/1.3261730
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/17/10.1063/1.3261730
2009-11-05
2014-12-18

Abstract

We observed that the excited-state twisting motion of -diethyloxacarbocyanine in polymernanocomposites (PNCs) depends strongly on the elastic modulus of medium. PNCs consist of low density polyethylene dispersed with surface-functionalized nanodiamonds with various alkyl groups. The mechanical properties of the PNCs were measured by a nanoindentation method, and the photoisomerization processes of the cyanine dye doped in the composites were investigated by time-resolved fluorescence spectroscopy. It was found that the molecular rotor dynamics in rigid media should be quantitatively describable by the elastic modulus of polymer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/17/1.3261730.html;jsessionid=2rja4ktkdssau.x-aip-live-03?itemId=/content/aip/journal/jcp/131/17/10.1063/1.3261730&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Molecular rotor dynamics influenced by the elastic modulus of polyethylene nanocomposites
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/17/10.1063/1.3261730
10.1063/1.3261730
SEARCH_EXPAND_ITEM