1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Competing quantum effects in the dynamics of a flexible water model
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/2/10.1063/1.3167790
1.
1.F. H. Stillinger, Adv. Chem. Phys. 31, 1 (1975).
http://dx.doi.org/10.1002/9780470143834.ch1
2.
2.R. A. Kuharski and P. J. Rossky, J. Chem. Phys. 82, 5164 (1985).
http://dx.doi.org/10.1063/1.448641
3.
3.A. Wallqvist and B. J. Berne, Chem. Phys. Lett. 117, 214 (1985).
http://dx.doi.org/10.1016/0009-2614(85)80206-2
4.
4.F. Paesani and G. A. Voth, J. Phys. Chem. B 113, 5702 (2009).
http://dx.doi.org/10.1021/jp810590c
5.
5.J. Cao and G. A. Voth, J. Chem. Phys. 100, 5106 (1994).
http://dx.doi.org/10.1063/1.467176
6.
6.S. Jang and G. A. Voth, J. Chem. Phys. 111, 2371 (1999).
http://dx.doi.org/10.1063/1.479515
7.
7.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
8.
8.B. J. Braams and D. E. Manolopoulos, J. Chem. Phys. 125, 124105 (2006).
http://dx.doi.org/10.1063/1.2357599
9.
9.J. Lobaugh and G. A. Voth, J. Chem. Phys. 106, 2400 (1997).
http://dx.doi.org/10.1063/1.473151
10.
10.L. Hernández de la Peña and P. G. Kusalik, J. Chem. Phys. 121, 5992 (2004).
http://dx.doi.org/10.1063/1.1783871
11.
11.T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. 123, 154504 (2005).
http://dx.doi.org/10.1063/1.2074967
12.
12.L. Hernández de la Peña and P. G. Kusalik, J. Chem. Phys. 125, 054512 (2006).
http://dx.doi.org/10.1063/1.2238861
13.
13.F. Paesani, W. Zhang, D. A. Case, T. E. Cheatham III, and G. A. Voth, J. Chem. Phys. 125, 184507 (2006).
http://dx.doi.org/10.1063/1.2386157
14.
14.F. Paesani, S. Iuchi, and G. A. Voth, J. Chem. Phys. 127, 074506 (2007).
http://dx.doi.org/10.1063/1.2759484
15.
15.B. Guillot and Y. Guissani, J. Chem. Phys. 108, 10162 (1998).
http://dx.doi.org/10.1063/1.476475
16.
16.J. A. Poulsen, G. Nyman, and P. J. Rossky, Proc. Natl. Acad. Sci. U.S.A. 102, 6709 (2005).
http://dx.doi.org/10.1073/pnas.0408647102
17.
17.J. -L. Barrat and I. R. McDonald, Mol. Phys. 70, 535 (1990).
http://dx.doi.org/10.1080/00268979000101181
18.
18.A. Wallqvist and O. Teleman, Mol. Phys. 74, 515 (1991).
http://dx.doi.org/10.1080/00268979100102391
19.
19.D. E. Smith and A. D. J. Haymet, J. Chem. Phys. 96, 8450 (1992).
http://dx.doi.org/10.1063/1.462297
20.
20.G. Raabe and R. J. Sadus, J. Chem. Phys. 126, 044701 (2007).
http://dx.doi.org/10.1063/1.2428302
21.
21.J. Lopez-Lemus, G. A. Chapela, and J. Alejandre, J. Chem. Phys. 128, 174703 (2008).
http://dx.doi.org/10.1063/1.2907845
22.
22.T. M. Chang and L. X. Dang, Chem. Rev. (Washington, D.C.) 106, 1305 (2006).
http://dx.doi.org/10.1021/cr0403640
23.
23.H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
24.
24.K. Watanabe and M. L. Klein, Chem. Phys. 131, 157 (1989).
http://dx.doi.org/10.1016/0301-0104(89)80166-1
25.
25.J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
26.
26.M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).
http://dx.doi.org/10.1063/1.446740
27.
27.H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
http://dx.doi.org/10.1063/1.439486
28.
28.H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
29.
29.T. Bryk and A. D. J. Haymet, J. Chem. Phys. 117, 10258 (2002).
http://dx.doi.org/10.1063/1.1519538
30.
30.R. García Fernández, J. L. F. Abascal, and C. Vega, J. Chem. Phys. 124, 144506 (2006).
http://dx.doi.org/10.1063/1.2183308
31.
31.A. Hayward and J. R. Reimers, J. Chem. Phys. 106, 1518 (1997).
http://dx.doi.org/10.1063/1.473300
32.
32.V. Buch, P. Sandler, and J. Sadlej, J. Phys. Chem. B 102, 8641 (1998).
http://dx.doi.org/10.1021/jp980866f
33.
33.J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).
http://dx.doi.org/10.1063/1.1749327
34.
34.V. F. Petrenko and R. W. Whitworth, Physics of Ice (Clarendon, Oxford, 1999).
35.
35.H. Nada and Y. Furukawa, J. Cryst. Growth 283, 242 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.05.057
36.
36.T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. 122, 184503 (2005).
http://dx.doi.org/10.1063/1.1893956
37.
37.T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008).
http://dx.doi.org/10.1063/1.2953308
38.
38.S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, J. Chem. Phys. 129, 074501 (2008).
http://dx.doi.org/10.1063/1.2968555
39.
39.T. D. Hone, P. J. Rossky, and G. A. Voth, J. Chem. Phys. 124, 154103 (2006).
http://dx.doi.org/10.1063/1.2186636
40.
40.D. A. McQuarrie, Statistical Mechanics (University Science, Sausalito, 2000).
41.
41.R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).
42.
42.R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
http://dx.doi.org/10.1143/JPSJ.12.570
43.
43.R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer, New York, 1985).
44.
44.D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 2002).
45.
45.T. E. Markland and D. E. Manolopoulos, Chem. Phys. Lett. 464, 256 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.09.019
46.
46.S. L. Carnie and G. N. Patey, Mol. Phys. 47, 1129 (1982).
http://dx.doi.org/10.1080/00268978200100822
47.
47.J. L. F. Abascal and C. Vega, Phys. Chem. Chem. Phys. 9, 2775 (2007).
http://dx.doi.org/10.1039/b703873a
48.
48.A. K. Soper, Chem. Phys. 258, 121 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00179-8
49.
49.P. Paricaud, M. Předota, A. A. Chialvo, and P. T. Cummings, J. Chem. Phys. 122, 244511 (2005).
http://dx.doi.org/10.1063/1.1940033
50.
50.D. Paschek, J. Chem. Phys. 120, 6674 (2004).
http://dx.doi.org/10.1063/1.1652015
51.
51.C. Vega, E. Sanz, and J. L. F. Abascal, J. Chem. Phys. 122, 114507 (2005).
http://dx.doi.org/10.1063/1.1862245
52.
52.C. Vega and J. L. F. Abascal, J. Chem. Phys. 123, 144504 (2005).
http://dx.doi.org/10.1063/1.2056539
53.
53.E. R. Batista, S. S. Xantheas, and H. Jönsson, J. Chem. Phys. 109, 4546 (1998).
http://dx.doi.org/10.1063/1.477058
54.
54.E. R. Batista, S. S. Xantheas, and H. Jönsson, J. Chem. Phys. 111, 6011 (1999).
http://dx.doi.org/10.1063/1.479897
55.
55.W. S. Price, H. Ide, and Y. Arata, J. Phys. Chem. A 103, 448 (1999).
http://dx.doi.org/10.1021/jp9839044
56.
56.W. S. Price, H. Ide, and Y. Arata, J. Phys. Chem. B 104, 5874 (2000).
http://dx.doi.org/10.1021/jp0015372
57.
57.B. Dünweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).
http://dx.doi.org/10.1063/1.465445
58.
58.I. -C. Yeh and G. Hummer, J. Phys. Chem. B 108, 15873 (2004).
http://dx.doi.org/10.1021/jp0477147
59.
59.H. S. Tan, I. R. Piletic, and M. D. Fayer, J. Chem. Phys. 122, 174501 (2005).
http://dx.doi.org/10.1063/1.1883605
60.
60.Y. L. A. Rezus and H. J. Bakker, J. Chem. Phys. 123, 114502 (2005).
http://dx.doi.org/10.1063/1.2009729
61.
61.C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 118, 264 (2003).
http://dx.doi.org/10.1063/1.1525802
62.
62.R. Winkler, J. Lindner, H. Bürsing, and P. Vöhringer, J. Chem. Phys. 113, 4674 (2000).
http://dx.doi.org/10.1063/1.1288690
63.
63.J. E. Bertie and Z. Lan, Appl. Spectrosc. 50, 1047 (1996).
http://dx.doi.org/10.1366/0003702963905385
64.
64.R. W. Impey, P. A. Madden, and I. R. McDonald, Mol. Phys. 46, 513 (1982).
http://dx.doi.org/10.1080/00268978200101361
65.
65.J. E. Bertie, M. K. Ahmed, and H. H. Eysel, J. Phys. Chem. 93, 2210 (1989).
http://dx.doi.org/10.1021/j100343a008
66.
66.B. Chen, I. Ivanov, M. L. Klein, and M. Parrinello, Phys. Rev. Lett. 91, 215503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.215503
67.
67.A. K. Soper and C. J. Benmore, Phys. Rev. Lett. 101, 065502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.065502
68.
68.J. -P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
69.
69.H. C. Andersen, J. Comput. Phys. 52, 24 (1983).
http://dx.doi.org/10.1016/0021-9991(83)90014-1
70.
70.G. S. Fanourgakis and S. S. Xantheas, J. Phys. Chem. A 110, 4100 (2006).
http://dx.doi.org/10.1021/jp056477k
71.
71.B. T. Thole, Chem. Phys. 59, 341 (1981).
http://dx.doi.org/10.1016/0301-0104(81)85176-2
72.
72.C. J. Burnham, J. C. Li, S. S. Xantheas, and M. Leslie, J. Chem. Phys. 110, 4566 (1999).
http://dx.doi.org/10.1063/1.478797
73.
73.C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 5115 (2002).
http://dx.doi.org/10.1063/1.1447904
74.
74.C. J. Burnham, G. F. Reiter, J. Mayers, T. Abdul-Redah, H. Reichert, and H. Dosch, Phys. Chem. Chem. Phys. 8, 3966 (2006).
http://dx.doi.org/10.1039/b605410b
75.
75.G. S. Fanourgakis and S. S. Xantheas, J. Chem. Phys. 128, 074506 (2008).
http://dx.doi.org/10.1063/1.2837299
76.
76.G. S. Fanourgakis, private communication.
77.
77.A. Saul and W. Wagner, J. Phys. Chem. Ref. Data 18, 1537 (1989).
78.
78.Handbook of Chemistry and Physics, 58th ed., edited by R. C. Weast (CRC, Cleveland, 1977).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/2/10.1063/1.3167790
Loading
/content/aip/journal/jcp/131/2/10.1063/1.3167790
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/2/10.1063/1.3167790
2009-07-08
2015-03-07

Abstract

Numerous studies have identified large quantum mechanical effects in the dynamics of liquid water. In this paper, we suggest that these effects may have been overestimated due to the use of rigid water models and flexible models in which the intramolecular interactions were described using simple harmonic functions. To demonstrate this, we introduce a new simple point charge model for liquid water, q-TIP4P/F, in which the O–H stretches are described by Morse-type functions. We have parametrized this model to give the correct liquid structure, diffusion coefficient, and infrared absorption frequencies in quantum (path integral-based) simulations. The model also reproduces the experimental temperature variation of the liquid density and affords reasonable agreement with the experimental melting temperature of hexagonal ice at atmospheric pressure. By comparing classical and quantum simulations of the liquid, we find that quantum mechanical fluctuations increase the rates of translational diffusion and orientational relaxation in our model by a factor of around 1.15. This effect is much smaller than that observed in all previous simulations of empirical water models, which have found a quantum effect of at least 1.4 regardless of the quantum simulation method or the water model employed. The small quantum effect in our model is a result of two competing phenomena. Intermolecular zero point energy and tunneling effects destabilize the hydrogen-bonding network, leading to a less viscous liquid with a larger diffusion coefficient. However, this is offset by intramolecular zero point motion, which changes the average water monomer geometry resulting in a larger dipole moment, stronger intermolecular interactions, and a slower diffusion. We end by suggesting, on the basis of simulations of other potential energy models, that the small quantum effect we find in the diffusion coefficient is associated with the ability of our model to produce a single broad O–H stretching band in the infrared absorptionspectrum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/2/1.3167790.html;jsessionid=21r3khilxb65u.x-aip-live-06?itemId=/content/aip/journal/jcp/131/2/10.1063/1.3167790&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Competing quantum effects in the dynamics of a flexible water model
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/2/10.1063/1.3167790
10.1063/1.3167790
SEARCH_EXPAND_ITEM