1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Pressure-energy correlations in liquids. III. Statistical mechanics and thermodynamics of liquids with hidden scale invariance
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/23/10.1063/1.3265955
1.
1.U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015701
2.
2.U. R. Pedersen, T. Christensen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. E 77, 011201 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.011201
3.
3.N. P. Bailey, T. Christensen, B. Jakobsen, K. Niss, N. B. Olsen, U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, J. Phys.: Condens. Matter 20, 244113 (2008).
http://dx.doi.org/10.1088/0953-8984/20/24/244113
4.
4.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008) (Paper I).
http://dx.doi.org/10.1063/1.2982247
5.
5.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008) (Paper II).
http://dx.doi.org/10.1063/1.2982249
6.
6.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
7.
7.M. Dzugutov, Phys. Rev. A 46, R2984 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.R2984
8.
8.N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009) (Paper IV).
9.
9.E. D. Chisolm and D. C. Wallace, J. Phys.: Condens. Matter 13, R739 (2001).
http://dx.doi.org/10.1088/0953-8984/13/37/201
10.
10.G. Oster, A. Perelson, and A. Katchalsky, Nature (London) 234, 393 (1971).
http://dx.doi.org/10.1038/234393a0
11.
11.O. Klein, Medd. Vetenskapsakad. Nobelinst. 5, 1 (1919).
12.
12.T. H. Berlin and E. W. Montroll, J. Chem. Phys. 20, 75 (1952).
http://dx.doi.org/10.1063/1.1700200
13.
13.W. G. Hoover, M. Ross, K. W. Johnson, D. Henderson, J. A. Barker, and B. C. Brown, J. Chem. Phys. 52, 4931 (1970).
http://dx.doi.org/10.1063/1.1672728
14.
14.W. G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem. Phys. 55, 1128 (1971).
http://dx.doi.org/10.1063/1.1676196
15.
15.Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita, and A. Ueda, Prog. Theor. Phys. 52, 1105 (1974).
http://dx.doi.org/10.1143/PTP.52.1105
16.
16.D. Ben-Amotz and G. J. Stell, J. Chem. Phys. 119, 10777 (2003).
http://dx.doi.org/10.1063/1.1620995
17.
17.C. DeMichele, F. Sciortino, and A. Coniglio, J. Phys.: Condens. Matter 16, L489 (2004).
http://dx.doi.org/10.1088/0953-8984/16/45/L01
18.
18.P. E. Ramirez-Gonzalez and M. Medina-Noyola, J. Phys.: Condens. Matter 21, 075101 (2009).
http://dx.doi.org/10.1088/0953-8984/21/7/075101
19.
19.S. M. Stishov, Sov. Phys. Usp. 17, 625 (1975).
http://dx.doi.org/10.1070/PU1975v017n05ABEH004361
20.
20.J. D. Weeks and J. Q. Broughton, J. Chem. Phys. 78, 4197 (1983).
http://dx.doi.org/10.1063/1.445097
21.
21.J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic, New York, 1986).
22.
22.T. B. Schrøder, U. R. Pedersen, and J. C. Dyre, e-print arXiv:0803.2199.
23.
23.T. B. Schrøder, U. R. Pedersen, N. P. Bailey, S. Toxvaerd, and J. C. Dyre, Phys. Rev. E 80, 041502 (2009).
24.
24.C. Alba-Simionesco, A. Cailliaux, A. Alegria, and G. Tarjus, Europhys. Lett. 68, 58 (2004).
http://dx.doi.org/10.1209/epl/i2004-10214-6
25.
25.C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. Phys. 68, 1405 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R03
26.
26.A. Grzybowski, M. Paluch, and K. Grzybowska, J. Phys. Chem. B 113, 7419 (2009).
http://dx.doi.org/10.1021/jp9010235
27.
27.V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009).
http://dx.doi.org/10.1021/jp805227c
28.
28.E. A. Jagla, J. Chem. Phys. 111, 8980 (1999).
http://dx.doi.org/10.1063/1.480241
29.
29.The system consisted of 512 asymmetric dumbbell molecules modeled as two LJ spheres connected by a rigid bond. The dumbbells were parametrized to mimic toluene. A large sphere (mimicking a phenyl group) was taken from the Lewis-Wahnström OTP model (Ref. 30) with the parameters , , and . A small sphere (mimicking a methyl group) was taken from UA-OPLS having , , and . The bonds were kept rigid with a bond length of . The volume was , giving an average pressure of approximately . The temperature was held constant at using the Nosé–Hoover thermostat. simulations were carried out using GROMACS software (Refs. 52 and 53) using the Nosé–Hoover thermostat (Refs. 54 and 55). Molecules were kept rigid using the LINCS algorithm (Ref. 56).
30.
30.L. J. Lewis and G. Wahnström, Phys. Rev. E 50, 3865 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.3865
31.
31.H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
32.
32.M. Goldstein, J. Chem. Phys. 51, 3728 (1969).
http://dx.doi.org/10.1063/1.1672587
33.
33.F. H. Stillinger and T. A. Weber, Phys. Rev. A 28, 2408 (1983).
http://dx.doi.org/10.1103/PhysRevA.28.2408
34.
34.F. H. Stillinger, Science 267, 1935 (1995).
http://dx.doi.org/10.1126/science.267.5206.1935
35.
35.T. B. Schrøder, S. Sastry, J. C. Dyre, and S. C. Glotzer, J. Chem. Phys. 112, 9834 (2000).
http://dx.doi.org/10.1063/1.481621
36.
36.In particular, averages of quantities which are the sums of single-particle functions (Ref. 6).
37.
37.J. L. Lebowitz, J. K. Perkus, and L. Verlet, Phys. Rev. 153, 250 (1967).
http://dx.doi.org/10.1103/PhysRev.153.250
38.
38.M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford U.K., 1954).
39.
39.N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Wiston, New York, 1976).
40.
40.D. C. Wallace, Thermodynamics of Crystals (Dover, New York, 1972).
41.
41.R. Casalini, U. Mohanty, and C. M. Roland, J. Chem. Phys. 125, 014505 (2006).
http://dx.doi.org/10.1063/1.2206582
42.
42.C. M. Roland, J. L. Feldman, and R. Casalini, J. Non-Cryst. Solids 352, 4895 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.149
43.
43.C. M. Roland and R. Casalini, J. Phys.: Condens. Matter 19, 205118 (2007).
http://dx.doi.org/10.1088/0953-8984/19/20/205118
44.
44.H. Paynter, Analysis and Design of Engineering Systems (MIT, Cambridge, MA, 1961).
45.
45.G. F. Oster, A. S. Perelson, and A. Katchalsky, Q. Rev. Biophys. 6, 1 (1973).
http://dx.doi.org/10.1017/S0033583500000081
46.
46.P. V. Christiansen, Dynamik og Diagrammer (1978), IMFUFA Text No. 8, Roskilde.
47.
47.P. V. Christiansen, Semiotik og Systemegenskaber (1979), IMFUFA Text No. 22, Roskilde.
48.
48.D. C. Mikulecky, Applications of Network Thermodynamics to Problems in Biomedical Engineering (New York University, New York, 1993).
49.
49.D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System Dynamics: Modeling and Simulation of Mechatronic Systems (Wiley, New York, 2006).
50.
50.N. L. Ellegaard, T. Christensen, P. V. Christiansen, N. B. Olsen, U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 126, 074502 (2007).
http://dx.doi.org/10.1063/1.2434963
51.
51.T. Christensen and J. C. Dyre, Phys. Rev. E 78, 021501 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.021501
52.
52.H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, Comput. Phys. Commun. 91, 43 (1995).
http://dx.doi.org/10.1016/0010-4655(95)00042-E
53.
53.E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 (2001).
54.
54.S. Nosé, Mol. Phys. 52, 255 (1984).
http://dx.doi.org/10.1080/00268978400101201
55.
55.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
56.
56.B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
57.
57.D. Coslovich and C. M. Roland, J. Chem. Phys. 130, 014508 (2009).
http://dx.doi.org/10.1063/1.3054635
58.
journal-id:
59.
journal-id:
60.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/23/10.1063/1.3265955
Loading
/content/aip/journal/jcp/131/23/10.1063/1.3265955
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/23/10.1063/1.3265955
2009-12-17
2014-09-03

Abstract

In this third paper of the series, which started with Bailey et al. [J. Chem. Phys.129, 184507 (2008);ibid.129, 184508 (2008)], we continue the development of the theoretical understanding of strongly correlating liquids—those whose instantaneous potential energy and virial are more than 90% correlated in their thermal equilibrium fluctuations at constant volume. The existence of such liquids was detailed in previous work, which identified them, based on computer simulations, as a large class of liquids, including van der Waals liquids but not, e.g., hydrogen-bonded liquids. We here discuss the following: (1) the scaling properties of inverse power-law and extended inverse power-law potentials (the latter includes a linear term that “hides” the approximate scale invariance); (2) results from computer simulations of molecular models concerning out-of-equilibrium conditions; (3) ensemble dependence of the virial/potential-energy correlation coefficient; (4) connection to the Grüneisen parameter; and (5) interpretation of strong correlations in terms of the energy-bond formalism.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/23/1.3265955.html;jsessionid=1tp58tdghhj1s.x-aip-live-06?itemId=/content/aip/journal/jcp/131/23/10.1063/1.3265955&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Pressure-energy correlations in liquids. III. Statistical mechanics and thermodynamics of liquids with hidden scale invariance
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/23/10.1063/1.3265955
10.1063/1.3265955
SEARCH_EXPAND_ITEM