1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Correlation energy of two electrons in the high-density limit
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/24/10.1063/1.3275519
1.
1.E. Wigner, Phys. Rev. 46, 1002 (1934).
http://dx.doi.org/10.1103/PhysRev.46.1002
2.
2.P. -O. Löwdin, Adv. Chem. Phys. 2, 207 (1959).
http://dx.doi.org/10.1002/9780470143483.ch7
3.
3.W. J. Hehre, L. Radom, P. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
4.
4.G. S. Ezra and R. S. Berry, Phys. Rev. A 25, 1513 (1982).
http://dx.doi.org/10.1103/PhysRevA.25.1513
5.
5.N. R. Kestner and O. Sinanoglu, Phys. Rev. 128, 2687 (1962).
http://dx.doi.org/10.1103/PhysRev.128.2687
6.
6.J. D. Louck, J. Mol. Spectrosc. 4, 298 (1960).
http://dx.doi.org/10.1016/0022-2852(60)90091-6
7.
7.D. R. Herschbach, J. Chem. Phys. 84, 838 (1986).
http://dx.doi.org/10.1063/1.450584
8.
8.E. A. Hylleraas, Z. Phys. 65, 209 (1930).
http://dx.doi.org/10.1007/BF01397032
9.
9.J. D. Baker, D. E. Freund, R. Nyden Hill, and J. D. Morgan III, Phys. Rev. A 41, 1247 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.1247
10.
10.P. -F. Loos and P. M. W. Gill, Phys. Rev. Lett. 103, 123008 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.123008
11.
11.R. J. White and W. Byers Brown, J. Chem. Phys. 53, 3869 (1970).
http://dx.doi.org/10.1063/1.1673854
12.
12.J. Katriel, S. Roy, and M. Springborg, J. Chem. Phys. 123, 104104 (2005).
http://dx.doi.org/10.1063/1.2033747
13.
13.P. M. W. Gill and D. P. O’Neill, J. Chem. Phys. 122, 094110 (2005).
http://dx.doi.org/10.1063/1.1862237
14.
14.J. G. Loeser and D. R. Herschbach, J. Chem. Phys. 86, 3512 (1987).
http://dx.doi.org/10.1063/1.451954
15.
15.M. Seidl, Phys. Rev. A 75, 062506 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.062506
16.
16.P. -F. Loos and P. M. W. Gill, Phys. Rev. A 79, 062517 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.062517
17.
17.T. M. Henderson, K. Runge, and R. J. Bartlett, Chem. Phys. Lett. 337, 138 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00157-9
18.
18.M. Abramowitz and I. E. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
19.
19.D. R. Herrick and F. H. Stillinger, Phys. Rev. A 11, 42 (1975).
http://dx.doi.org/10.1103/PhysRevA.11.42
20.
20.E. A. Hylleraas, Adv. Quantum Chem. 1, 1 (1964).
http://dx.doi.org/10.1016/S0065-3276(08)60373-1
21.
21.W. Kutzelnigg and J. D. Morgan III, J. Chem. Phys. 96, 4484 (1992).
http://dx.doi.org/10.1063/1.462811
22.
22.D. R. Herrick, J. Math. Phys. 16, 281 (1975).
http://dx.doi.org/10.1063/1.522538
23.
23.D. Z. Goodson, D. K. Watson, J. G. Loeser, and D. R. Herschbach, Phys. Rev. A 44, 97 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.97
24.
24.J. G. Loeser and D. R. Herschbach, J. Chem. Phys. 84, 3893 (1986).
http://dx.doi.org/10.1063/1.450100
25.
25.J. Linderberg, Phys. Rev. 121, 816 (1961).
http://dx.doi.org/10.1103/PhysRev.121.816
26.
26.W. Byers Brown and J. O. Hirschfelder, Proc. Natl. Acad. Sci. U.S.A. 50, 399 (1963).
http://dx.doi.org/10.1073/pnas.50.2.399
27.
27.L. D. Mlodinow and N. Papanicolaou, Ann. Phys. 131, 1 (1981).
http://dx.doi.org/10.1016/0003-4916(81)90181-0
28.
28.L. G. Yaffe, Phys. Today 36 (8), 50 (1983).
http://dx.doi.org/10.1063/1.2915799
29.
29.D. J. Doren and D. R. Herschbach, Chem. Phys. Lett. 118, 115 (1985).
http://dx.doi.org/10.1016/0009-2614(85)85280-5
30.
30.J. Cioslowski and K. Pernal, J. Chem. Phys. 113, 8434 (2000).
http://dx.doi.org/10.1063/1.1318767
31.
31.D. C. Thompson and A. Alavi, J. Chem. Phys. 122, 124107 (2005).
http://dx.doi.org/10.1063/1.1869978
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/24/10.1063/1.3275519
Loading
/content/aip/journal/jcp/131/24/10.1063/1.3275519
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/24/10.1063/1.3275519
2009-12-22
2014-08-01

Abstract

We consider the high-density-limit correlation energy in dimensions for the ground states of three two-electron systems: helium (in which the electrons move in a Coulombic field), spherium (in which they move on the surface of a sphere), and hookium (in which they move in a quadratic potential). We find that the values are strikingly similar, depending strongly on but only weakly on the external potential. We conjecture that for large , the limiting correlation energy in any confining external potential, where .

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/24/1.3275519.html;jsessionid=27g4nug5ljk94.x-aip-live-02?itemId=/content/aip/journal/jcp/131/24/10.1063/1.3275519&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Correlation energy of two electrons in the high-density limit
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/24/10.1063/1.3275519
10.1063/1.3275519
SEARCH_EXPAND_ITEM