1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Zero point energy leakage in condensed phase dynamics: An assessment of quantum simulation methods for liquid water
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/24/10.1063/1.3276109
1.
1.J. Cao and G. A. Voth, J. Chem. Phys. 100, 5106 (1994).
http://dx.doi.org/10.1063/1.467176
2.
2.S. Jang and G. A. Voth, J. Chem. Phys. 111, 2371 (1999).
http://dx.doi.org/10.1063/1.479515
3.
3.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
4.
4.B. J. Braams and D. E. Manolopoulos, J. Chem. Phys. 125, 124105 (2006).
http://dx.doi.org/10.1063/1.2357599
5.
5.H. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. 108, 9726 (1998).
http://dx.doi.org/10.1063/1.476447
6.
6.X. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. 109, 7064 (1998).
http://dx.doi.org/10.1063/1.477389
7.
7.T. D. Hone and G. A. Voth, J. Chem. Phys. 121, 6412 (2004).
http://dx.doi.org/10.1063/1.1780951
8.
8.J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Phys. Chem. B 108, 19799 (2004).
http://dx.doi.org/10.1021/jp040425y
9.
9.T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. 122, 184503 (2005).
http://dx.doi.org/10.1063/1.1893956
10.
10.J. Liu and W. H. Miller, J. Chem. Phys. 127, 114506 (2007).
http://dx.doi.org/10.1063/1.2774990
11.
11.E. Rabani, D. R. Reichman, G. Krilov, and B. J. Berne, Proc. Natl. Acad. Sci. U.S.A. 99, 1129 (2002).
http://dx.doi.org/10.1073/pnas.261540698
12.
12.S. Habershon, B. J. Braams, and D. E. Manolopoulos, J. Chem. Phys. 127, 174108 (2007).
http://dx.doi.org/10.1063/1.2786451
13.
13.J. Liu and W. H. Miller, J. Chem. Phys. 129, 124111 (2008).
http://dx.doi.org/10.1063/1.2981065
14.
14.F. Paesani and G. A. Voth, J. Chem. Phys. 129, 194113 (2008).
http://dx.doi.org/10.1063/1.3013365
15.
15.J. A. Poulsen, G. Nyman, and P. J. Rossky, Proc. Natl. Acad. Sci. U.S.A. 102, 6709 (2005).
http://dx.doi.org/10.1073/pnas.0408647102
16.
16.J. Liu, W. H. Miller, F. Paesani, W. Zhang, and D. A. Case, J. Chem. Phys. 131, 164509 (2009).
http://dx.doi.org/10.1063/1.3254372
17.
17.J. Lobaugh and G. A. Voth, J. Chem. Phys. 106, 2400 (1997).
http://dx.doi.org/10.1063/1.473151
18.
18.F. Paesani, W. Zhang, D. A. Case, T. E. Cheatham III, and G. A. Voth, J. Chem. Phys. 125, 184507 (2006).
http://dx.doi.org/10.1063/1.2386157
19.
19.T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008).
http://dx.doi.org/10.1063/1.2953308
20.
20.B. J. Braams, T. F. Miller III, and D. E. Manolopoulos, Chem. Phys. Lett. 418, 179 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.10.127
21.
21.J. M. Bowman, B. Gazdy, and Q. Sun, J. Chem. Phys. 91, 2859 (1989).
http://dx.doi.org/10.1063/1.456955
22.
22.W. H. Miller, W. L. Hase, and C. L. Darling, J. Chem. Phys. 91, 2863 (1989).
http://dx.doi.org/10.1063/1.456956
23.
23.G. Nyman and J. Davidsson, J. Chem. Phys. 92, 2415 (1990).
http://dx.doi.org/10.1063/1.457985
24.
24.A. J. C. Varandas and J. M. C. Marques, J. Chem. Phys. 97, 4050 (1992).
http://dx.doi.org/10.1063/1.463934
25.
25.G. H. Peslherbe and W. L. Hase, J. Chem. Phys. 100, 1179 (1994).
http://dx.doi.org/10.1063/1.466648
26.
26.M. Ben-Nun and R. D. Levine, J. Chem. Phys. 101, 8768 (1994).
http://dx.doi.org/10.1063/1.468071
27.
27.K. F. Lim and D. A. McCormack, J. Chem. Phys. 102, 1705 (1995).
http://dx.doi.org/10.1063/1.468697
28.
28.C. Schlier, J. Chem. Phys. 103, 1989 (1995).
http://dx.doi.org/10.1063/1.469724
29.
29.D. A. McCormack and K. F. Lim, J. Chem. Phys. 103, 1991 (1995).
http://dx.doi.org/10.1063/1.469725
30.
30.Y. Guo, D. L. Thompson, and T. D. Sewell, J. Chem. Phys. 104, 576 (1996).
http://dx.doi.org/10.1063/1.470853
31.
31.D. A. McCormack and K. F. Lim, J. Chem. Phys. 106, 572 (1997).
http://dx.doi.org/10.1063/1.473396
32.
32.Z. Xie and J. M. Bowman, J. Phys. Chem. A 110, 5446 (2006).
http://dx.doi.org/10.1021/jp055861e
33.
33.S. Habershon, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009).
http://dx.doi.org/10.1063/1.3167790
34.
34.R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer-Verlag, New York, 1985).
35.
35.D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987).
36.
36.R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
http://dx.doi.org/10.1143/JPSJ.12.570
37.
37.D. A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, 2000).
38.
38.D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).
http://dx.doi.org/10.1063/1.441588
39.
39.M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).
http://dx.doi.org/10.1063/1.446740
40.
40.T. F. Miller III, D. E. Manolopoulos, P. A. Madden, M. Konieczny, and H. Oberhofer, J. Chem. Phys. 122, 057101 (2005).
http://dx.doi.org/10.1063/1.1839867
41.
41.G. A. Voth and T. D. Hone, J. Chem. Phys. 122, 057102 (2005).
http://dx.doi.org/10.1063/1.1839868
42.
42.E. Wigner, Phys. Rev. 40, 749 (1932).
http://dx.doi.org/10.1103/PhysRev.40.749
43.
43.E. Wigner, Trans. Faraday Soc. 34, 29 (1938).
http://dx.doi.org/10.1039/tf9383400029
44.
44.E. J. Heller, J. Chem. Phys. 65, 1289 (1976).
http://dx.doi.org/10.1063/1.433238
45.
45.H. -W. Lee and M. O. Scully, J. Chem. Phys. 73, 2238 (1980).
http://dx.doi.org/10.1063/1.440419
46.
46.E. Pollak and J. -L. Liao, J. Chem. Phys. 108, 2733 (1998).
http://dx.doi.org/10.1063/1.475665
47.
47.R. Hernandez and G. A. Voth, Chem. Phys. 233, 243 (1998).
http://dx.doi.org/10.1016/S0301-0104(98)00027-5
48.
48.J. Liu and W. H. Miller, J. Chem. Phys. 128, 144511 (2008).
http://dx.doi.org/10.1063/1.2889945
49.
49.A. Horikoshi and K. Kinugawa, J. Chem. Phys. 122, 174104 (2005).
http://dx.doi.org/10.1063/1.1888576
50.
50.I. R. Craig and D. E. Manolopoulos, Chem. Phys. 322, 236 (2006).
http://dx.doi.org/10.1016/j.chemphys.2005.07.012
51.
51.Q. Shi and E. Geva, J. Chem. Phys. 118, 8173 (2003).
http://dx.doi.org/10.1063/1.1564814
52.
52.J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Chem. Phys. 119, 12179 (2003).
http://dx.doi.org/10.1063/1.1626631
53.
53.J. Liu and W. H. Miller, J. Chem. Phys. 126, 234110 (2007).
http://dx.doi.org/10.1063/1.2743023
54.
54.Q. Shi and E. Geva, J. Phys. Chem. A 107, 9059 (2003).
http://dx.doi.org/10.1021/jp030497+
55.
55.R. P. Feynman and H. Kleinert, Phys. Rev. A 34, 5080 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.5080
56.
56.J. Liu and W. H. Miller, J. Chem. Phys. 125, 224104 (2006).
http://dx.doi.org/10.1063/1.2395941
57.
57.P. Frantsuzov, A. Neumaier, and V. A. Mandelshtam, Chem. Phys. Lett. 381, 117 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.104
58.
58.J. Liu and W. H. Miller, J. Chem. Phys. 131, 074113 (2009).
http://dx.doi.org/10.1063/1.3202438
59.
59.M. Ceriotti, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 103, 030603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.030603
60.
60.T. E. Markland and D. E. Manolopoulos, Chem. Phys. Lett. 464, 256 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.09.019
61.
61.G. S. Fanourgakis, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 131, 094102 (2009).
http://dx.doi.org/10.1063/1.3216520
62.
62.B. Dünweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).
http://dx.doi.org/10.1063/1.465445
63.
63.I. -C. Yeh and G. Hummer, J. Phys. Chem. B 108, 15873 (2004).
http://dx.doi.org/10.1021/jp0477147
64.
64.T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. 123, 154504 (2005).
http://dx.doi.org/10.1063/1.2074967
65.
65.T. D. Hone, J. A. Poulsen, P. J. Rossky, and D. E. Manolopoulos, J. Phys. Chem. B 112, 294 (2008).
http://dx.doi.org/10.1021/jp075022n
66.
66.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005).
http://dx.doi.org/10.1063/1.1850093
67.
67.M. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 76, 5150 (1982).
http://dx.doi.org/10.1063/1.442815
68.
68.D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
http://dx.doi.org/10.1103/RevModPhys.67.279
69.
69.J. Liu, A. Nakayama, and N. Makri, Mol. Phys. 104, 1267 (2006).
http://dx.doi.org/10.1080/00268970500525754
70.
70.S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, J. Chem. Phys. 129, 074501 (2008).
http://dx.doi.org/10.1063/1.2968555
71.
71.T. D. Hone, P. J. Rossky, and G. A. Voth, J. Chem. Phys. 124, 154103 (2006).
http://dx.doi.org/10.1063/1.2186636
72.
72.J. E. Bertie and Z. Lan, Appl. Spectrosc. 50, 1047 (1996).
http://dx.doi.org/10.1366/0003702963905385
73.
73.A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, J. Chem. Phys. 130, 194510 (2009).
http://dx.doi.org/10.1063/1.3125009
74.
74.G. S. Fanourgakis and S. S. Xantheas, J. Chem. Phys. 128, 074506 (2008).
http://dx.doi.org/10.1063/1.2837299
75.
75.F. Paesani, S. S. Xantheas, and G. A. Voth, J. Phys. Chem. B 113, 13118 (2009).
http://dx.doi.org/10.1021/jp907648y
76.
76.Y. Wang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 131, 054511 (2009).
http://dx.doi.org/10.1063/1.3196178
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/24/10.1063/1.3276109
Loading
/content/aip/journal/jcp/131/24/10.1063/1.3276109
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/24/10.1063/1.3276109
2009-12-31
2015-01-29

Abstract

The approximate quantum mechanical ring polymermolecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorptionspectrum, for which the RPMD approximation breaks down at frequencies in the O–H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/24/1.3276109.html;jsessionid=6hc3k230qi809.x-aip-live-03?itemId=/content/aip/journal/jcp/131/24/10.1063/1.3276109&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Zero point energy leakage in condensed phase dynamics: An assessment of quantum simulation methods for liquid water
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/24/10.1063/1.3276109
10.1063/1.3276109
SEARCH_EXPAND_ITEM