1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Thermally driven molecular linear motors: A molecular dynamics study
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/24/10.1063/1.3281642
1.
1.H. Somada, K. Hirahara, S. Akita, and Y. Nakayama, Nano Lett. 9, 62 (2009).
http://dx.doi.org/10.1021/nl802323n
2.
2.A. Barreiro, R. Rurali, E. R. Hernández, J. Moser, T. Pichler, L. Forró, and A. Bachtold, Science 320, 775 (2008).
http://dx.doi.org/10.1126/science.1155559
3.
3.P. A. E. Schoen, J. H. Walther, S. Arcidiacono, D. Poulikakos, and P. Koumoutsakos, Nano Lett. 6, 1910 (2006).
http://dx.doi.org/10.1021/nl060982r
4.
4.P. A. E. Schoen, J. H. Walther, D. Poulikakos, and P. Koumoutsakos, Appl. Phys. Lett. 90, 253116 (2007).
http://dx.doi.org/10.1063/1.2748367
5.
5.P. A. E. Schoen, J. H. Walther, D. Poulikakos, and P. Koumoutsakos, Appl. Phys. Lett. 91, 079901 (2007).
http://dx.doi.org/10.1063/1.2771500
6.
6.H. A. Zambrano, J. H. Walther, P. Koumoutsakos, and I. F. Sbalzarini, Nano Lett. 9, 66 (2009).
http://dx.doi.org/10.1021/nl802429s
7.
7.Y. Ueno, H. Somada, K. Hirahara, Y. Nakayama, and S. Akita, Jpn. J. Appl. Phys. 48, 06FG03 (2009).
http://dx.doi.org/10.1143/JJAP.48.06FG03
8.
8.B. W. Smith, M. Monthioux, and D. E. Luzzi, Chem. Phys. Lett. 315, 31 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00896-9
9.
9.R. Gasparac, P. Kohli, M. O. Mota, L. Trofin, and C. R. Martin, Nano Lett. 4, 513 (2004).
http://dx.doi.org/10.1021/nl0352494
10.
10.B. C. Regan, S. Aloni, R. O. Ritchie, U. Dahmen, and A. Zettl, Nature (London) 428, 924 (2004).
http://dx.doi.org/10.1038/nature02496
11.
11.K. Svensson, H. Olin, and E. Olsson, Phys. Rev. Lett. 93, 145901 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.145901
12.
12.A. S. Fedorov and A. F. Sadreev, Eur. Phys. J. B 69, 363 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00152-1
13.
13.J. Shiomi and S. Maruyama, Nanotechnology 20, 055708 (2009).
http://dx.doi.org/10.1088/0957-4484/20/5/055708
14.
14.G. E. Begtrup, W. Gannet, T. D. Yuzvinsky, V. H. Crespi, and A. Zettl, Nano Lett. 9, 1835 (2009).
http://dx.doi.org/10.1021/nl803800c
15.
15.J. M. Howe, T. Yokota, M. Murayama, and W. A. Jesser, J. Electron Microsc. 53, 107 (2004).
http://dx.doi.org/10.1093/jmicro/53.2.107
16.
16.T. Yokota, M. Murayama, and J. Howe, Phys. Rev. Lett. 91, 265504 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.265504
17.
17.J. S. Wang, J. Wang, and J. T. Lu, Eur. Phys. J. B 62, 381 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00195-8
18.
18.J. Biskupek, U. Kaiser, and F. Falk, J. Electron Microsc. 57, 83 (2008).
http://dx.doi.org/10.1093/jmicro/dfn008
19.
19.A. V. Krasheninnikov, J. Comput. Theor. Nanosci. 5, 1828 (2008).
http://dx.doi.org/10.1166/jctn.2008.902
20.
20.A. V. Krasheninnikov and F. Banhart, Nature Mater. 6, 723 (2007).
http://dx.doi.org/10.1038/nmat1996
21.
21.J. H. Walther, R. Jaffe, T. Halicioglu, and P. Koumoutsakos, J. Phys. Chem. B 105, 9980 (2001).
http://dx.doi.org/10.1021/jp011344u
22.
22.T. A. Hilder and J. M. Hill, Small 5, 300 (2009).
http://dx.doi.org/10.1002/smll.200800321
23.
23.T. A. Hilder and J. M. Hill, Nanotechnology 18, 275704 (2007).
http://dx.doi.org/10.1088/0957-4484/18/27/275704
24.
24.D. Baowan, N. Thamwattana, and J. M. Hill, Phys. Rev. B 76, 155411 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155411
25.
25.M. Yoon, S. Berber, and D. Tomanek, Phys. Rev. B 71, 155406 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.155406
26.
26.Q. Chen, Q. Wang, Y. C. Liu, T. Wu, Y. Kang, J. D. Moore, and K. E. Gubbins, J. Chem. Phys. 131, 015101 (2009).
http://dx.doi.org/10.1063/1.3148025
27.
27.H. Gao, Y. Kong, and D. Cui, Nano Lett. 3, 471 (2003).
http://dx.doi.org/10.1021/nl025967a
28.
28.D. Mattia and Y. Gogotsi, Microfluid. Nanofluid. 5, 289 (2008).
http://dx.doi.org/10.1007/s10404-008-0293-5
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/24/10.1063/1.3281642
Loading
/content/aip/journal/jcp/131/24/10.1063/1.3281642
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/24/10.1063/1.3281642
2009-12-29
2014-08-20

Abstract

We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsulelike nanotube. The simulations indicate that the motion of the capsule can be controlled by thermophoretic forces induced by thermal gradients. The simulations find large terminal velocities of 100–400 nm/ns for imposed thermal gradients in the range of 1–3 K/nm. Moreover, the results indicate that the thermophoretic force is velocity dependent and its magnitude decreases for increasing velocity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/24/1.3281642.html;jsessionid=2q4721bd0ixm.x-aip-live-02?itemId=/content/aip/journal/jcp/131/24/10.1063/1.3281642&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermally driven molecular linear motors: A molecular dynamics study
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/24/10.1063/1.3281642
10.1063/1.3281642
SEARCH_EXPAND_ITEM