1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4-(dimethylamino)benzonitrile?
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/3/10.1063/1.3173609
1.
1.E. Lippert, W. Lüder, and H. Boos, in Advances in Molecular Spectroscopy, edited by A. Mangini (Pergamon, Oxford, 1962), p. 443.
2.
2.Z. R. Grabowski, K. Rotkiewicz, and W. Rettig, Chem. Rev. (Washington, D.C.) 103, 3899 (2003), and references therein.
http://dx.doi.org/10.1021/cr940745l
3.
3.K. Rotkiewicz, K. H. Grellmann, and Z. R. Grabowski, Chem. Phys. Lett. 19, 315 (1973).
http://dx.doi.org/10.1016/0009-2614(73)80367-7
4.
4.Z. R. Grabowski, K. Rotkiewicz, A. Siemiarczuk, D. J. Cowley, and W. Baumann, Nouv. J. Chim. 3, 443 (1979).
5.
5.T. Okada, M. Uesugi, G. Kohler, K. Rechthaler, K. Rotkiewicz, W. Rettig, and G. Grabner, Chem. Phys. 241, 327 (1999).
http://dx.doi.org/10.1016/S0301-0104(98)00411-X
6.
6.W. M. Kwok, C. Ma, P. Matousek, A. W. Parker, D. Phillips, W. T. Toner, M. Towrie, and S. Umapathy, J. Phys. Chem. A 105, 984 (2001).
http://dx.doi.org/10.1021/jp003705w
7.
7.K. A. Zachariasse, S. I. Druzhinin, W. Bosch, and R. Machinek, J. Am. Chem. Soc. 126, 1705 (2004).
http://dx.doi.org/10.1021/ja037544w
8.
8.C. Hättig, A. Hellweg, and A. Köhn, J. Am. Chem. Soc. 128, 15672 (2006).
http://dx.doi.org/10.1021/ja0642010
9.
9.I. Gomez, Y. Mercier, and M. Reguero, J. Phys. Chem. A 110, 11455 (2006).
http://dx.doi.org/10.1021/jp062926k
10.
10.S. I. Druzhinin, N. P. Ernsting, S. A. Kovalenko, L. P. Lustres, T. A. Senyushkina, and K. A. Zachariasse, J. Phys. Chem. A 110, 2955 (2006), and references therein.
http://dx.doi.org/10.1021/jp054496o
11.
11.J. -K. Lee, T. Fujiwara, W. G. Kofron, M. Z. Zgierski, and E. C. Lim, J. Chem. Phys. 128, 164512 (2008).
http://dx.doi.org/10.1063/1.2901976
12.
12.M. Z. Zgierski and E. C. Lim, J. Chem. Phys. 121, 2462 (2004).
http://dx.doi.org/10.1063/1.1780154
13.
13.M. Z. Zgierski and E. C. Lim, J. Chem. Phys. 122, 111103 (2005).
http://dx.doi.org/10.1063/1.1889431
14.
14.P. Changenet, P. Plaza, M. M. Martin, and Y. H. Meyer, J. Phys. Chem. A 101, 8186 (1997).
http://dx.doi.org/10.1021/jp971743i
15.
15.E. Iwase, A. Tomioka, H. Saigusa, and M. Yagi, Phys. Chem. Chem. Phys. 6, 3852 (2004).
http://dx.doi.org/10.1039/b402202e
16.
16.T. Gustavsson, B. P. Coto, and E. C. Lim (unpublished).
17.
17.J. -K. Lee, T. Fujiwara, and E. C. Lim (unpublished).
18.
18.See Ref. 11 for experimental details.
19.
19.See, for experimental details, T. Gustavsson, A. Sharonov, and D. Markovitsi, Chem. Phys. Lett. 351, 195 (2002).
http://dx.doi.org/10.1016/S0009-2614(01)01375-6
20.
20.S. I. Druzhinin, V. A. Galievsky, and K. A. Zachariasse, J. Phys. Chem. A 109, 11213 (2005).
http://dx.doi.org/10.1021/jp055012r
21.
21.M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. 99, 17311 (1995).
http://dx.doi.org/10.1021/j100048a004
22.
22.Because of the triplet-triplet absorption with intensity maximum at 380 nm [Y. Wang, J. Chem. Soc., Faraday Trans. 2, 1809 (1988)], which strongly overlap the 420 nm TICT transient, it is very difficult to measure the decay time of the TICT state absorption at 420 nm.
23.
23.W. -M. Kwok, M. W. George, D. C. Grills, C. Ma, P. Matousek, A. W. Parker, D. Phillips, W. T. Toner, and M. Towrie, Angew. Chem., Int. Ed. 42, 1826 (2003).
http://dx.doi.org/10.1002/anie.200219816
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/3/10.1063/1.3173609
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The femtosecond time-resolved fluorescence upconversion spectra: (a) two-dimensional image plot and (b) its corresponding time-evoluted spectra of DMABN in acetonitrile (Acn) at room temperature. The spectral region around 400 nm was masked thoroughly to protect a detector in the excitation wavelength of 267 nm. The fluorescence decay curves of (c) the LE emission at 350 nm and (d) the ICT emission at 550 nm for DMABN in Acn. Common decay time constants were evaluated including other upconversion sets (not shown here) by a nonlinear least-squares global fit with a deconvolution procedure. The numbers in the parentheses indicate a standard deviation .

Image of FIG. 2.

Click to view

FIG. 2.

The femtosecond time-resolved transient absorption spectra (−2 to 25 ps with an interval of 0.1 ps) at (a) shorter- and (b) longer-wavelength region for DMABN in Acn at room temperature. The arrows indicate the time evolution of the spectra, and assignments for the transients are also shown. Kinetics at (c) the 420 nm transient (TICT) and (d) 680 nm transient (the -state absorption), which were extracted with a band integration from the time-resolved spectra [(a) and (b)]. Leaders show the fitted decay times with a standard deviation in the parentheses.

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of the long decay of the ICT fluorescence and the TICT transient absorption: (a) The time-resolved transient absorption spectra (−0.2 to 3.7 ns with an interval of 20 ps) and (b) steady-state absorption and emission spectra for DMABN in Acn at room temperature. The arrows indicate the time evolution of the spectra, and annotation of T represents the triplet-triplet transient absorption. (c) Kinetics at the 330 nm TICT transient as well as those of 410 and 555 nm for DMABN in acetonitrile, generated with band integration of the time-resolved spectra (a). (d) Fluorescence decay curve of the ICT emission at 470 nm, and that of the LE emission at 350 nm measured by a picosecond time-correlated single-photon counting in the excitation of 280 nm. Both decay curves were fitted well with double exponential (fast and slow decay components). Leaders only present the slow decay time with a standard deviation in the parentheses to show the difference.

Tables

Generic image for table

Click to view

Table I.

Global fit analyses in the fluorescence upconversion measurements of DMABN/Acn at . All decay constants are in ps, if not otherwise stated.

Loading

Article metrics loading...

/content/aip/journal/jcp/131/3/10.1063/1.3173609
2009-07-15
2014-04-17

Abstract

We present here the results of time-resolvedabsorption and emission experiments for 4-(dimethylamino)benzonitrile in solution, which suggest that the fluorescent intramolecular charge transfer (ICT) state may differ from the twisted ICT (TICT) state observed in transient absorption.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/3/1.3173609.html;jsessionid=far46otk8qgtt.x-aip-live-03?itemId=/content/aip/journal/jcp/131/3/10.1063/1.3173609&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4-(dimethylamino)benzonitrile?
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/3/10.1063/1.3173609
10.1063/1.3173609
SEARCH_EXPAND_ITEM