Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/1/10.1063/1.3285266
1.
1.F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.371
2.
2.M. Knickelbein, Annu. Rev. Phys. Chem. 50, 79 (1999).
http://dx.doi.org/10.1146/annurev.physchem.50.1.79
3.
3.C. Adlhart and E. Uggerud, J. Chem. Phys. 123, 214709 (2005).
http://dx.doi.org/10.1063/1.2131066
4.
4.D. Harding, M. S. Ford, T. R. Walsh, and S. R. Mackenzie, Phys. Chem. Chem. Phys. 9, 2130 (2007).
http://dx.doi.org/10.1039/b618299b
5.
5.A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield, Phys. Rev. B 49, 12295 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.12295
6.
6.F. W. Payne, W. Jiang, and L. A. Bloomfield, Phys. Rev. Lett. 97, 193401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.193401
7.
7.M. K. Beyer and M. B. Knickelbein, J. Chem. Phys. 126, 104301 (2007).
http://dx.doi.org/10.1063/1.2698320
8.
8.M. B. Knickelbein and S. Yang, J. Chem. Phys. 93, 5760 (1990).
http://dx.doi.org/10.1063/1.459570
9.
9.M. B. Knickelbein, Phys. Rev. A 67, 013202 (2003).
http://dx.doi.org/10.1103/PhysRevA.67.013202
10.
10.H. Wu, S. R. Desai, and L. -S. Wang, Phys. Rev. Lett. 77, 2436 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2436
11.
11.S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. 116, 4094 (2002).
http://dx.doi.org/10.1063/1.1445121
12.
12.D. Schooss, M. N. Blom, J. H. Parks, B. v. Issendorff, H. Haberland, and M. M. Kappes, Nano Lett. 5, 1972 (2005).
http://dx.doi.org/10.1021/nl0513434
13.
13.A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, Phys. Rev. Lett. 93, 023401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.023401
14.
14.P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke, Science 321, 674 (2008).
http://dx.doi.org/10.1126/science.1161166
15.
15.D. Harding, S. R. Mackenzie, and T. R. Walsh, J. Phys. Chem. B 110, 18272 (2006).
http://dx.doi.org/10.1021/jp062603o
16.
16.H. Grönbeck, A. Hellman, and A. Gavrin, J. Phys. Chem. A 111, 6062 (2007).
http://dx.doi.org/10.1021/jp071117d
17.
17.D. Majumdar and K. Balasubramanian, J. Chem. Phys. 108, 2495 (1998).
http://dx.doi.org/10.1063/1.475632
18.
18.W. Zhang, L. Xiao, Y. Hirata, T. Pawluk, and L. Wang, Chem. Phys. Lett. 383, 67 (2004).
http://dx.doi.org/10.1016/j.cplett.2003.11.005
19.
19.Y. -C. Bae, H. Osanai, V. Kumar, and Y. Kawazoe, Phys. Rev. B 70, 195413 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195413
20.
20.Y. -C. Bae, V. Kumar, H. Osanai, and Y. Kawazoe, Phys. Rev. B 72, 125427 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125427
21.
21.Y. Sun, R. Fournier, and M. Zhang, Phys. Rev. A 79, 043202 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.043202
22.
22.C. Ratsch, A. Fielicke, A. Kirilyuk, J. Behler, G. von Helden, G. Meijer, and M. Scheffler, J. Chem. Phys. 122, 124302 (2005).
http://dx.doi.org/10.1063/1.1862621
23.
23.A. Fielicke, C. Ratsch, G. von Helden, and G. Meijer, J. Chem. Phys. 127, 234306 (2007).
http://dx.doi.org/10.1063/1.2806176
24.
24.T. Futschek, M. Marsman, and J. Hafner, J. Phys.: Condens. Matter 17, 5927 (2005).
http://dx.doi.org/10.1088/0953-8984/17/38/001
25.
25.W. Zhang, H. Zhao, and L. Wang, J. Phys. Chem. B 108, 2140 (2004).
http://dx.doi.org/10.1021/jp035995x
26.
26.S. Li, H. Li, J. Liu, X. Xue, Y. Tian, H. He, and Y. Jia, Phys. Rev. B 76, 045410 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045410
27.
27.L. -L. Wang and D. Johnson, J. Phys. Chem. B 109, 23113 (2005).
http://dx.doi.org/10.1021/jp0555347
28.
28.R. Gehrke, P. Gruene, A. Fielicke, G. Meijer, and K. Reuter, J. Chem. Phys. 130, 034306 (2009).
http://dx.doi.org/10.1063/1.3058637
29.
29.D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111 (1997).
http://dx.doi.org/10.1021/jp970984n
30.
30.A. P. Sutton and J. Chen, Philos. Mag. Lett. 61, 139 (1990).
http://dx.doi.org/10.1080/09500839008206493
31.
31.J. C. Slater, Phys. Rev. 81, 385 (1951).
http://dx.doi.org/10.1103/PhysRev.81.385
32.
32.S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
33.
33.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. T. V. J. A. Montgomery, K. N. Kudin, J. C. Burant, J. M. Millam et al. (Gaussian, Inc., Pittsburgh, 2003).
34.
34.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
35.
35.J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
36.
36.P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).
http://dx.doi.org/10.1063/1.448799
37.
37.H. Wang, H. Haouari, R. Craig, Y. Liu, J. R. Lombardi, and D. M. Lindsay, J. Chem. Phys. 106, 2101 (1997).
http://dx.doi.org/10.1063/1.473344
38.
38.N. E. Schultz, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A 109, 4388 (2005).
http://dx.doi.org/10.1021/jp0504468
39.
39.F. Illas, J. Rubio, J. Cañellas, and J. M. Ricart, J. Chem. Phys. 93, 2603 (1990).
http://dx.doi.org/10.1063/1.459695
40.
40.K. Balasubramanian and D. W. Liao, J. Phys. Chem. 93, 3989 (1989).
41.
41.See supplementary material at http://dx.doi.org/10.1063/1.3285266 for details of the quantum chemical calculations.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/1/10.1063/1.3285266
Loading
/content/aip/journal/jcp/132/1/10.1063/1.3285266
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/1/10.1063/1.3285266
2010-01-06
2016-10-01

Abstract

The geometricstructure of the cation is investigated using a combination of far-infrared multiple photon dissociation spectroscopy and density functional theory(DFT) calculations. The energetic ordering of the different structural motifs is found to depend sensitively on the choice of pure or hybrid exchange functionals. Comparison of experimental and calculated spectra suggests the cluster to have a close-packed, bicapped octahedral structure, in contrast to recent predictions of a cubic structure for the neutral cluster. Our findings demonstrate the importance of including some exact exchange contributions in the DFT calculations, via hybrid functionals, when applied to rhodiumclusters, and cast doubt on the application of pure functionals for late transition metal clusters in general.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/1/1.3285266.html;jsessionid=rWzjhsy_FWIDHAcnpy_QuJvu.x-aip-live-03?itemId=/content/aip/journal/jcp/132/1/10.1063/1.3285266&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/1/10.1063/1.3285266&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/1/10.1063/1.3285266'
Right1,Right2,Right3,