Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/10/10.1063/1.3340404
1.
1.R. W. Munn, Mol. Phys. 64, 1 (1988).
http://dx.doi.org/10.1080/00268978800100013
2.
2.A. J. Rybarczyk-Pirek and M. Z. Zgierski, J. Chem. Phys. 115, 9346 (2001).
http://dx.doi.org/10.1063/1.1414371
3.
3.R. S. Gopalan, G. U. Kulkarni, and C. N. R. Rao, ChemPhysChem 1, 127 (2000).
http://dx.doi.org/10.1002/1439-7641(20001103)1:3<127::AID-CPHC127>3.0.CO;2-1
4.
4.P. Popelier, A. T. H. Lenstra, C. Van Alsenoy, and H. J. Geise, J. Am. Chem. Soc. 111, 5658 (1989).
http://dx.doi.org/10.1021/ja00197a023
5.
5.E. May, R. Destro, and C. Gatti, J. Am. Chem. Soc. 123, 12248 (2001).
http://dx.doi.org/10.1021/ja010316m
6.
6.D. Tsiaousis, R. W. Munn, P. J. Smith, and P. L. A. Popelier, Chem. Phys. 305, 317 (2004).
http://dx.doi.org/10.1016/j.chemphys.2004.07.013
7.
7.D. M. Bishop, Rev. Mod. Phys. 62, 343 (1990).
http://dx.doi.org/10.1103/RevModPhys.62.343
8.
8.M. R. Pederson, T. Baruah, P. B. Allen, and C. Schmidt, J. Chem. Theory Comput. 1, 590 (2005).
http://dx.doi.org/10.1021/ct050061t
9.
9.G. S. Pawley and S. J. Cyvin, J. Chem. Phys. 52, 4073 (1970).
http://dx.doi.org/10.1063/1.1673612
10.
10.J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1957).
11.
11.H. Graafsma, A. Paturle, T. L. Wu, H. -S. Sheu, J. Majewski, G. Poorthuis, and P. Coppens, Acta Crystallogr., Sect. A: Found. Crystallogr. 48, 113 (1992).
http://dx.doi.org/10.1107/S0108767391008887
12.
12.A. Paturle, H. Graafsma, H. -S. Sheu, P. Coppens, and P. Becker, Phys. Rev. B 43, 14683 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.14683
13.
13.K. Sutter, C. Bosshard, M. Ehrensperger, P. Günter, and R. J. Twieg, IEEE J. Quantum Electron. 24, 2362 (1988).
http://dx.doi.org/10.1109/3.14363
14.
14.R W. Munn, M Malagoli, and M. in het Panhuis, Synth. Met. 109, 29 (2000).
http://dx.doi.org/10.1016/S0379-6779(99)00193-9
15.
15.R. W. Munn, M. G. Papadopoulos, and H. Reis, Pol. J. Chem. 76, 155 (2002).
16.
16.R. W. Munn and P. Petelenz, Chem. Phys. Lett. 392, 7 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.05.039
17.
17.R. W. Munn, J. Chem. Phys. 101, 5262 (1994).
http://dx.doi.org/10.1063/1.467379
18.
18.R. W. Munn, J. Chem. Phys. 132, 104512 (2010).
19.
19.B. J. Orr and J. F. Ward, Mol. Phys. 20, 513 (1971).
http://dx.doi.org/10.1080/00268977100100481
20.
20.M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954).
21.
21.T. Luty and R. W. Munn, Chem. Phys. 43, 295 (1979).
http://dx.doi.org/10.1016/0301-0104(79)85197-6
22.
22.R. W. Munn, Chem. Phys. 59, 269 (1981).
http://dx.doi.org/10.1016/0301-0104(81)85170-1
23.
23.R. W. Munn, J. Chem. Phys. 114, 5607 (2001).
http://dx.doi.org/10.1063/1.1355312
24.
24.T. Luty, A. Mierzejewski, and R. W. Munn, Chem. Phys. 29, 353 (1978).
http://dx.doi.org/10.1016/0301-0104(78)85086-1
25.
25.R. W. Munn, Chem. Phys. 76, 243 (1983).
http://dx.doi.org/10.1016/0301-0104(83)85037-X
26.
26.A. I. M. Rae, Mol. Phys. 16, 257 (1969).
http://dx.doi.org/10.1080/00268976900100311
27.
27.E. R. Smith, Proc. R. Soc. London, Ser. A 375, 475 (1981);
http://dx.doi.org/10.1098/rspa.1981.0064
27.E. R. Smith, Proc. R. Soc. London, Ser. A381, 241 (1982).
http://dx.doi.org/10.1098/rspa.1982.0068
28.
28.D. Tsiaousis and R. W. Munn, J. Chem. Phys. 117, 10860 (2002).
http://dx.doi.org/10.1063/1.1522403
29.
29.R. Resta, Ferroelectrics 136, 51 (1992).
http://dx.doi.org/10.1080/00150199208016065
30.
30.X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035105
31.
31.T. Luty and R. W. Munn, J. Phys. C 15, 4459 (1982).
http://dx.doi.org/10.1088/0022-3719/15/21/010
32.
32.R. W. Munn and T. Luty, Chem. Phys. 38, 413 (1979).
http://dx.doi.org/10.1016/0301-0104(79)89014-X
33.
33.Ch. Bosshard, R. Spreiter, and P. Günter, Ferroelectrics 258, 89 (2001).
http://dx.doi.org/10.1080/00150190108008661
34.
34.M. Malagoli and R. W. Munn, J. Chem. Phys. 107, 7926 (1997).
http://dx.doi.org/10.1063/1.475106
35.
35.E. L. Buckland and R. W. Boyd, Opt. Lett. 21, 1117 (1996).
http://dx.doi.org/10.1364/OL.21.001117
36.
36.G. S. Pawley, Phys. Status Solidi 20, 347 (1967).
http://dx.doi.org/10.1002/pssb.19670200135
37.
37.H. Reis, M. G. Papadopoulos, C. Hättig, J. G. Ángyán, and R. W. Munn, J. Chem. Phys. 112, 6161 (2000).
http://dx.doi.org/10.1063/1.481217
38.
38.Y. M. Shkel and D. J. Klingenberg, J. Appl. Phys. 83, 415 (1998).
http://dx.doi.org/10.1063/1.366656
39.
39.J. M. Halbout, S. Blit, W. Donaldson, and C. L. Tang, IEEE J. Quantum Electron. 15, 1176 (1979).
http://dx.doi.org/10.1109/JQE.1979.1069900
40.
40.J. A. Morrell, A. C. Albrecht, K. H. Levin, and C. L. Tang, J. Chem. Phys. 71, 5063 (1979).
http://dx.doi.org/10.1063/1.438279
41.
41.H. Reis, M. G. Papadopoulos, and R. W. Munn, J. Chem. Phys. 109, 6828 (1998).
http://dx.doi.org/10.1063/1.477330
42.
42.H. Reis, S. G. Raptis, and M. G. Papadopoulos, Chem. Phys. 263, 301 (2001).
http://dx.doi.org/10.1016/S0301-0104(00)00367-0
43.
43.H. Reis and J. M. Luis, “Prediction of the linear and nonlinear susceptibilities of POM and mNA crystals with account of electronic and molecular vibrational contributions,” AIP Conf. Proc. (in press).
44.
44.R. W. Munn and R. J. Newham, J. Phys. C 7, 848 (1974).
http://dx.doi.org/10.1088/0022-3719/7/5/008
45.
45.P. J. Bounds and R. W. Munn, Chem. Phys. 39, 165 (1979).
http://dx.doi.org/10.1016/0301-0104(79)87004-4
46.
46.G. Kloos, Appl. Opt. 35, 5398 (1996).
http://dx.doi.org/10.1364/AO.35.005398
47.
47.S. Schreuer and S. Haussühl, J. Phys. D 32, 1263 (1999).
http://dx.doi.org/10.1088/0022-3727/32/11/313
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/10/10.1063/1.3340404
Loading
/content/aip/journal/jcp/132/10/10.1063/1.3340404
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/10/10.1063/1.3340404
2010-03-12
2016-12-03

Abstract

Expressions are derived for additional contributions to the linear, quadratic, and cubic electric susceptibilities of molecular crystals that arise when molecules are displaced by the applied electric field. The contributions depend on quantities related to the infrared intensity of lattice vibrations, to the Raman intensity of lattice vibrations, and to the intensity of hyper-Rayleigh scattering. Some nonlinear contributions are zero except for response to a static electric field applied directly or produced by optical rectification. There are also contributions from averaging the susceptibilities in the equilibrium structure over the lattice modes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/10/1.3340404.html;jsessionid=4BzzatvQA1nHThX2w01E0ct7.x-aip-live-02?itemId=/content/aip/journal/jcp/132/10/10.1063/1.3340404&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/10/10.1063/1.3340404&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/10/10.1063/1.3340404'
Right1,Right2,Right3,