Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/11/10.1063/1.3336015
1.
1.J. G. Kaufman and E. L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Materials Park, OH, 2004).
2.
2.V. Ponec, Appl. Catal., A 222, 31 (2001).
http://dx.doi.org/10.1016/S0926-860X(01)00828-6
3.
3.M. Gladys, O. Inderwildi, S. Karakatsani, V. Fiorin, and G. Held, J. Phys. Chem. C 112, 6422 (2008).
http://dx.doi.org/10.1021/jp711588v
4.
4.E. Nikolla, A. Holewinski, J. Schwank, and S. Linic, J. Am. Chem. Soc. 128, 11354 (2006).
http://dx.doi.org/10.1021/ja0638298
5.
5.S. Linic, J. Jankowiak, and M. A. Barteau, J. Catal. 224, 489 (2004).
http://dx.doi.org/10.1016/j.jcat.2004.03.007
6.
6.J. Greeley and M. Mavrikakis, Nature Mater. 3, 810 (2004).
http://dx.doi.org/10.1038/nmat1223
7.
7.E. Nikolla, J. Schwank, and S. Linic, J. Catal. 263, 220 (2009).
http://dx.doi.org/10.1016/j.jcat.2009.02.006
8.
8.H. Yano, M. Kataoka, H. Yamashita, H. Uchida, and M. Watanabe, Langmuir 23, 6438 (2007).
http://dx.doi.org/10.1021/la070078u
9.
9.F. Besenbacher, I. Chorkendorff, B. S. Clausen, B. Hammer, A. M. Molenbroek, J. K. Nørskov, and I. Stensgaard, Science 279, 1913 (1998).
http://dx.doi.org/10.1126/science.279.5358.1913
10.
10.V. Stamenkovic, B. S. Mun, K. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, and J. K. Nørskov, Angew. Chem., Int. Ed. 45, 2897 (2006).
http://dx.doi.org/10.1002/anie.200504386
11.
11.E. Nikolla, J. Schwank, and S. Linic, J. Electrochem. Soc. 156, B1312 (2009).
http://dx.doi.org/10.1149/1.3208060
12.
12.B. Hammer, Top. Catal. 37, 3 (2006).
http://dx.doi.org/10.1007/s11244-006-0004-y
13.
13.B. Hammer and J. K. Nørskov, Surf. Sci. 343, 211 (1995).
http://dx.doi.org/10.1016/0039-6028(96)80007-0
14.
14.B. Hammer and J. K. Nørskov, Nature (London) 376, 238 (1995).
http://dx.doi.org/10.1038/376238a0
15.
15.B. Hammer and M. Scheffler, Phys. Rev. Lett. 74, 3487 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3487
16.
16.B. Hammer, Y. Morikawa, and J. K. Nørskov, Phys. Rev. Lett. 76, 2141 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2141
17.
17.J. K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, and C. J. H. Jacobsen, J. Catal. 209, 275 (2002).
http://dx.doi.org/10.1006/jcat.2002.3615
18.
18.W. A. Harrison, Electronic Structure and the Properties of Solids (Dover, New York, 1989).
19.
19.D. G. Pettifor, Bonding and Structure of Molecules and Solids (Oxford University Press, Oxford, 1995).
20.
20.J. R. Kitchin, J. K. Nørskov, M. A. Barteau, and J. G. Chen, Phys. Rev. Lett. 93, 156801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.156801
21.
21.See supplementary material at http://dx.doi.10.1063/1.3336015 for details of experimental procedures of catalysts synthesis and XAS measurement, and DFT computations of adsorption energies and oscillator strength. Additionally, the results for Ni alloys are also presented.[Supplementary Material]
22.
22.S. Gao, C. J. Pickard, A. Perlov, and V. Milman, J. Phys.: Condens. Matter 21, 104203 (2009).
http://dx.doi.org/10.1088/0953-8984/21/10/104203
23.
23.P. Durussel, R. Massara, and P. Feschotte, J. Alloys Compd. 215, 175 (1994).
http://dx.doi.org/10.1016/0925-8388(94)90837-0
24.
24.J. O. Linde, Ann. Phys. 422, 151 (1937).
http://dx.doi.org/10.1002/andp.19374220204
25.
25.A. N. Mansour, J. W. Cook, and D. E. Sayers, J. Phys. Chem. 88, 2330 (1984).
http://dx.doi.org/10.1021/j150655a029
26.
26.A. L. Ankudinov, J. J. Rehr, J. J. Low, and S. R. Bare, J. Synchrotron Radiat. 8, 578 (2001).
http://dx.doi.org/10.1107/S0909049500016046
27.
27.A. I. Nesvizhskii and J. J. Rehr, J. Synchrotron Radiat. 6, 315 (1999).
http://dx.doi.org/10.1107/S0909049599001697
28.
28.E. Nikolla, J. Schwank, and S. Linic, J. Am. Chem. Soc. 131, 2747 (2009).
http://dx.doi.org/10.1021/ja809291e
29.
29.A. L. Ankudinov, A. I. Nesvizhskii, and J. J. Rehr, J. Synchrotron Radiat. 8, 92 (2001).
http://dx.doi.org/10.1107/S0909049500016435
30.
30.J. E. Müller and J. W. Wilkins, Phys. Rev. B 29, 4331 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.4331
31.
31.D. A. Muller, D. J. Singh, and J. Silcox, Phys. Rev. B 57, 8181 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.8181
32.
32.M. Teliska, V. S. Murthi, S. Mukerjee, and D. E. Ramaker, J. Electrochem. Soc. 152, A2159 (2005).
http://dx.doi.org/10.1149/1.2040949
33.
33.J. R. Kitchin, J. K. Nørskov, M. A. Barteau, and J. G. Chen, J. Chem. Phys. 120, 10240 (2004).
http://dx.doi.org/10.1063/1.1737365
34.
34.R. F. W. Bader, Acc. Chem. Res. 18, 9 (1985).
http://dx.doi.org/10.1021/ar00109a003
35.
35.W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084204
36.
36.P. W. Anderson, Phys. Rev. 124, 41 (1961).
http://dx.doi.org/10.1103/PhysRev.124.41
37.
37.D. M. Newns, Phys. Rev. 178, 1123 (1969).
http://dx.doi.org/10.1103/PhysRev.178.1123
38.
38.A. R. Denton and N. W. Ashcroft, Phys. Rev. A 43, 3161 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.3161
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/11/10.1063/1.3336015
Loading
/content/aip/journal/jcp/132/11/10.1063/1.3336015
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/11/10.1063/1.3336015
2010-03-15
2016-10-01

Abstract

We have used X-ray absorption spectroscopy and quantum chemical density functional theory calculations to identify critical features in the electronic structure of different sites in alloys that govern the local chemical reactivity. The measurements led to a simple model relating local geometric features of a site in an alloy to its electronic structure and chemical reactivity. The central feature of the model is that the formation of alloys does not lead to significant charge transfer between the constituent metal elements in the alloys, and that the local electronic structure and chemical reactivity can be predicted based on physical characteristics of constituent metal elements in their unalloyed form.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/11/1.3336015.html;jsessionid=-l_zepmvfZRiax7kkNHyS7KS.x-aip-live-06?itemId=/content/aip/journal/jcp/132/11/10.1063/1.3336015&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/11/10.1063/1.3336015&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/11/10.1063/1.3336015'
Right1,Right2,Right3,