Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/11/10.1063/1.3354126
1.
1.M. S. Green, J. Chem. Phys. 22, 398 (1954).
http://dx.doi.org/10.1063/1.1740082
2.
2.R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Jpn. 12, 570 (1957).
http://dx.doi.org/10.1143/JPSJ.12.570
3.
3.R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Jpn. 12, 1203 (1957).
http://dx.doi.org/10.1143/JPSJ.12.1203
4.
4.K. Hayashi and S. -I. Sasa, Physica A 370, 407 (2006).
http://dx.doi.org/10.1016/j.physa.2006.03.007
5.
5.M. E. Tuckerman, Y. Liu, G. Ciccotti, and G. J. Martyna, J. Chem. Phys. 115, 1678 (2001).
http://dx.doi.org/10.1063/1.1378321
6.
6.G. Ciccotti, R. Kapral, and A. Sergi, in Handbook of Materials Modeling, edited by S. Yip (Springer, Berlin, 2005), pp. 745761.
http://dx.doi.org/10.1007/978-1-4020-3286-8_37
7.
7.P. Ryckaert and G. Ciccotti, J. Chem. Phys. 78, 7368 (1983).
http://dx.doi.org/10.1063/1.444728
8.
8.L. Simon, Lectures on Geometric Measure Theory (Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, 1984).
9.
9.A. Sergi, Phys. Rev. E 67, 021101 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.021101
10.
10.A. Sergi, Phys. Rev. E 69, 021109 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.021109
11.
11.L. Hernández de la Pena, R. van Zon, J. Schofield, and S. B. Oppsi, J. Chem. Phys. 126, 074105 (2007).
http://dx.doi.org/10.1063/1.2434957
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/11/10.1063/1.3354126
Loading
/content/aip/journal/jcp/132/11/10.1063/1.3354126
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/11/10.1063/1.3354126
2010-03-16
2016-10-01

Abstract

We revisit the problem of the linear response of a constrained mechanical system. In doing so, we show that the standard expressions of Green and Kubo carry over to the constrained case without any alteration. The argument is based on the appropriate definition of constrained expectations by means of which Liouville’s theorem and the Green–Kubo relations naturally follow.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/11/1.3354126.html;jsessionid=6ue62aTFcQxCo2D3cwyBZTzP.x-aip-live-03?itemId=/content/aip/journal/jcp/132/11/10.1063/1.3354126&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/11/10.1063/1.3354126&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/11/10.1063/1.3354126'
Right1,Right2,Right3,