Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. G. Truhlar, W. L. Hase, and J. T. Hynes, J. Phys. Chem. 87, 2664 (1983);
1.D. G. Truhlar and B. C. Garrett, Annu. Rev. Phys. Chem. 35, 159 (1984).
2.W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99 (1980);
2.C. J. Cerjan and W. H. Miller, J. Chem. Phys.75, 2800 (1981).
3.D. Sheppard, R. Terrell, and G. Henkelman, J. Chem. Phys. 128, 134106 (2008).
4.D. Hamelberg, J. Mongan, and J. A. McCammon, J. Chem. Phys. 120, 11919 (2004).
5.P. Faccioli, M. Sega, F. Pederiva, and H. Orland, Phys. Rev. Lett. 97, 108101 (2006);
5.M. Sega, P. Faccioli, F. Pederiva, G. Garberoglio, and H. Orland, Phys. Rev. Lett. 99, 118102 (2007);
5.E. Autieri, P. Faccioli, M. Sega, F. Pederiva, and H. Orland, J. Chem Phys. 130, 064106 (2009);
5.P. Faccioli, J. Phys. Chem. B 112, 13756 (2008).
6.R. Elber and D. Shalloway, J. Chem. Phys. 112, 5539 (2000).
7.A. R. Leach, Molecular Modeling: Principles and Applications, 2nd ed. (Pearson Educaton Limited, Harlow, 2001).
8.J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer-Verlag, Berlin, New York, 2006).
9.E. Bitzek P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006).
10.J. J. P. J. Stewart, J. Comput. Chem. 10, 209 (1989).
11.W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd ed. (Wiley-VCH, Weinheim, 2000).
12.A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002).

Data & Media loading...


Article metrics loading...



We introduce a framework to investigate ab initio the dynamics of rare thermally activated reactions, which cannot be studied using the existing techniques. The electronic degrees of freedom are described at the quantum-mechanical level in the Born–Oppenheimer approximation, while the nuclear degrees of freedom are coupled to a thermal bath, through a classical Langevin equation. This method is based on the path integral representation for the stochastic dynamics and yields the time evolution of both nuclear and electronic degrees of freedom, along the most probable reaction pathways, without spending computational time to explore metastable states. As a first illustrative application, we characterize the dominant pathway in the reaction, using the semiempirical Parametrized Model 3 (PM3) approach.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd