1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Cold and ultracold molecules: Spotlight on orbiting resonances
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/132/11/10.1063/1.3357286
1.
1.E. A. Hinds, Phys. Scr. T70, 34 (1997).
http://dx.doi.org/10.1088/0031-8949/1997/T70/005
2.
2.B. C. Regan, E. D. Commins, C. J. Schmidt, and D. DeMille, Phys. Rev. Lett. 88, 071805 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.071805
3.
3.M. R. Tarbutt, J. J. Hudson, B. E. Sauer, and E. A. Hinds, Faraday Discuss. 142, 37 (2009).
http://dx.doi.org/10.1039/b820625b
4.
4.D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.067901
5.
5.R. M. Rajapakse, T. Bragdon, A. M. Rey, T. Calarco, and S. F. Yelin, Phys. Rev. A 80, 013810 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.013810
6.
6.R. Brühl, A. Kalinin, O. Kornilov, J. P. Toennies, G. C. Hegerfeldt, and M. Stoll, Phys. Rev. Lett. 95, 063002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.063002
7.
7.K. Hornberger, L. Hackermuller, and M. Arndt, Phys. Rev. A 71, 023601 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.023601
8.
8.H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof'ev, G. Pupillo, and P. Zoller, Phys. Rev. Lett. 98, 060404 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.060404
9.
9.A. Micheli, G. Pupillo, H. P. Buchler, and P. Zoller, Phys. Rev. A 76, 043604 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.043604
10.
10.R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J. Heinzen, Science 287, 1016 (2000).
http://dx.doi.org/10.1126/science.287.5455.1016
11.
11.C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature (London) 424, 47 (2003).
http://dx.doi.org/10.1038/nature01738
12.
12.K. E. Strecker, G. B. Partridge, and R. G. Hulet, Phys. Rev. Lett. 91, 080406 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.080406
13.
13.S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. H. Denschlag, and R. Grimm, Science 302, 2101 (2003).
http://dx.doi.org/10.1126/science.1093280
14.
14.M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.250401
15.
15.H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, Nature (London) 406, 491 (2000).
http://dx.doi.org/10.1038/35020030
16.
16.H. L. Bethlem and G. Meijer, Int. Rev. Phys. Chem. 22, 73 (2003).
http://dx.doi.org/10.1080/0144235021000046422
17.
17.R. V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008).
http://dx.doi.org/10.1039/b802322k
18.
18.L. C. Carr, D. D. DeMIle, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009).
http://dx.doi.org/10.1088/1367-2630/11/5/055049
19.
19.M. Schnell and G. Meijer, Angew. Chem., Int. Ed. 48, 6010 (2009).
http://dx.doi.org/10.1002/anie.200805503
20.
20.K. E. Strecker and D. W. Chandler, ChemPhysChem 10, 751 (2008).
21.
21.J. Doyle, B. Friedrich, R. V. Krems, and R. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004).
http://dx.doi.org/10.1140/epjd/e2004-00151-x
22.
22.N. Balakrishnan and A. Dalgarno, Chem. Phys. Lett. 341, 652 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00515-2
23.
23.D. Herschbach, Faraday Discuss. 142, 9 (2009).
http://dx.doi.org/10.1039/b910118g
24.
24.J. M. Hutson and P. Soldan, Int. Rev. Phys. Chem. 26, 1 (2007).
http://dx.doi.org/10.1080/01442350601084562
25.
25.J. M. Hutson and P. Soldan, Int. Rev. Phys. Chem. 25, 497 (2006).
http://dx.doi.org/10.1080/01442350600921772
26.
26.D. L. Bunker, J. Chem. Phys. 32, 1001 (1960).
http://dx.doi.org/10.1063/1.1730840
27.
27.S. V. Antipov, T. Sjolander, G. Numan, and M. Gustafsson, J. Chem. Phys. 131, 074302 (2009).
http://dx.doi.org/10.1063/1.3196179
28.
28.E. Bodo, F. A. Gianturco, and A. Dalgarno, J. Chem. Phys. 116, 9222 (2002).
http://dx.doi.org/10.1063/1.1472515
29.
29.C. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. 93, 5387 (1990).
http://dx.doi.org/10.1063/1.459663
30.
30.C. M. Lovejoy, D. D. Nelson, and D. J. Nesbitt, J. Chem. Phys. 89, 7180 (1988).
http://dx.doi.org/10.1063/1.455296
31.
31.C. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. 94, 208 (1991).
http://dx.doi.org/10.1063/1.460379
32.
32.S. E. Choi, M. I. Lester, H. W. Jang, and J. C. Light, J. Chem. Phys. 102, 1981 (1995).
http://dx.doi.org/10.1063/1.468764
33.
33.L. C. Giancarlo, R. W. Randall, S. E. Choi, and M. I. Lester, J. Chem. Phys. 101, 2914 (1994).
http://dx.doi.org/10.1063/1.467604
34.
34.M. I. Lester, R. W. Randall, L. C. Giancarlo, and S. E. Choi, J. Chem. Phys. 99, 6211 (1993).
http://dx.doi.org/10.1063/1.465915
35.
35.G. E. Ewing, J. Chem. Phys. 72, 2096 (1980).
http://dx.doi.org/10.1063/1.439304
36.
36.B. C. Eu and J. Ross, J. Chem. Phys. 44, 2467 (1966).
http://dx.doi.org/10.1063/1.1727066
37.
37.J. P. Toennies, W. Welz, and G. Wolf, J. Chem. Phys. 71, 614 (1979).
http://dx.doi.org/10.1063/1.438414
38.
38.U. Schwalm and J. P. Toennies, Chem. Phys. Lett. 63, 17 (1979).
http://dx.doi.org/10.1016/0009-2614(79)80446-7
39.
39.J. P. Toennies, W. Welz, and G. Wolf, J. Chem. Phys. 64, 5305 (1976).
http://dx.doi.org/10.1063/1.432160
40.
40.A. Schutte, G. Scoles, F. Tommasini, and D. Bassi, Phys. Rev. Lett. 29, 979 (1972).
http://dx.doi.org/10.1103/PhysRevLett.29.979
41.
41.L. Boltzmann, Vorlesung Uber Gastheorie II (J. A. Barth, Leipzig, 1989).
42.
42.K. F. Herzfeld, Z. Phys. 8, 132 (1922).
http://dx.doi.org/10.1007/BF01329584
43.
43.W. Steiner, Z. Phys. Chem. B 15, 249 (1932).
44.
44.E. Rabinowitch, Trans. Faraday Soc. 33, 283 (1937).
http://dx.doi.org/10.1039/tf9373300283
45.
45.J. O. Hirschfeld, C. F. Curtiss, and R. B. Bird (Wiley, New York, 1954).
46.
46.J. Keck, J. Chem. Phys. 29, 410 (1958).
http://dx.doi.org/10.1063/1.1744495
47.
47.J. C. Light, J. Chem. Phys. 40, 3221 (1964).
http://dx.doi.org/10.1063/1.1724989
48.
48.D. L. Bunker and N. Davidson, J. Am. Chem. Soc. 80, 5090 (1958).
http://dx.doi.org/10.1021/ja01552a024
49.
49.A. E. Glassgold and S. A. Lebedeff, Ann. Phys. (N.Y.) 28, 181 (1964).
http://dx.doi.org/10.1016/0003-4916(64)90066-1
50.
50.R. Düren, R. Helbing, and H. Pauly, Z. Phys. 188, 468 (1965).
http://dx.doi.org/10.1007/BF01339877
51.
51.A. F. Wagner and J. M. Bowman, J. Phys. Chem. 91, 5314 (1987).
http://dx.doi.org/10.1021/j100304a036
52.
52.S. W. Cho, A. F. Wagner, B. Gazdy, and J. M. Bowman, J. Chem. Phys. 96, 2799 (1992).
http://dx.doi.org/10.1063/1.461976
53.
53.B. H. Yang, P. C. Stancil, and N. Balakrishnan, J. Chem. Phys. 123, 094308 (2005).
http://dx.doi.org/10.1063/1.2032948
54.
54.K. T. Lee and J. M. Bowman, J. Chem. Phys. 86, 215 (1987).
http://dx.doi.org/10.1063/1.452612
55.
55.A. Schutte, D. Bassi, F. Tommasini, and G. Scoles, J. Chem. Phys. 62, 600 (1975).
http://dx.doi.org/10.1063/1.430459
56.
56.J. P. Toennies, W. Welz, and G. Wolf, J. Chem. Phys. 61, 2461 (1974).
http://dx.doi.org/10.1063/1.1682349
57.
57.J. R. Grover, J. P. Toennies, W. Welz, and G. Wolf, Chem. Phys. Lett. 48, 24 (1977).
http://dx.doi.org/10.1016/0009-2614(77)80205-4
58.
58.R. S. Grace, D. L. Johnson, and J. G. Skofronick, J. Chem. Phys. 67, 2443 (1977).
http://dx.doi.org/10.1063/1.435217
59.
59.D. J. Nesbitt, C. M. Lovejoy, T. G. Lindeman, S. V. Oneil, and D. C. Clary, J. Chem. Phys. 91, 722 (1989).
http://dx.doi.org/10.1063/1.457178
60.
60.R. Lascola and D. J. Nesbitt, J. Chem. Phys. 95, 7917 (1991).
http://dx.doi.org/10.1063/1.461320
61.
61.C. Zhu, N. Balakrishnan, and A. Dalgarno, J. Chem. Phys. 115, 1335 (2001).
http://dx.doi.org/10.1063/1.1379581
62.
62.N. Balakrishnan, J. Chem. Phys. 113, 621 (2000).
http://dx.doi.org/10.1063/1.481838
63.
63.J. P. Reid, C. J. S. M. Simpson, and H. M. Quiney, J. Chem. Phys. 107, 9929 (1997).
http://dx.doi.org/10.1063/1.475295
64.
64.Q. G. N. Balakrishnan and B. K. Kendrick, J. Chem. Phys. 129, 224309 (2008).
http://dx.doi.org/10.1063/1.3035904
65.
65.T. G. Lee, N. Balakrishnan, R. C. Forrey, P. C. Stancil, D. R. Schultz, and G. J. Ferland, J. Chem. Phys. 125, 114302 (2006).
http://dx.doi.org/10.1063/1.2338319
66.
66.H. Cybulski, R. V. Krems, H. R. Sadeghpour, A. Dalgarno, J. Klos, G. C. Groenenboom, A. van der Avoird, D. Zgid, and G. Chalasinski, J. Chem. Phys. 122, 094307 (2005).
http://dx.doi.org/10.1063/1.1857473
67.
67.R. V. Krems, H. R. Sadeghpour, A. Dalgarno, D. Zgid, J. Klos, and G. Chalasinski, Phys. Rev. A 68, 051401 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.051401
68.
68.B. C. Shepler, B. H. Yang, T. J. D. Kumar, P. C. Stancil, J. M. Bowman, N. Balakrishnan, P. Zhang, E. Bodo, and A. Dalgarno, Astron. Astrophys. 475, L15 (2007).
http://dx.doi.org/10.1051/0004-6361:20078693
69.
69.P. S. Żuchowski and J. M. Hutson, Phys. Rev. A 79, 062708 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.062708
70.
70.P. S. Żuchowski and J. M. Hutson, Phys. Rev. A 78, 022701 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.022701
71.
71.N. Balakrishnan, G. C. Groenenboom, R. V. Krems, and A. Dalgarno, J. Chem. Phys. 118, 7386 (2003).
http://dx.doi.org/10.1063/1.1562947
72.
72.L. González-Sánchez, E. Bodo, and F. A. Gianturco, Phys. Rev. A 73, 022703 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.022703
73.
73.M. T. Cvitaš, P. Soldan, J. M. Hutson, P. Honvault, and J. M. Launay, J. Chem. Phys. 127, 074302 (2007).
http://dx.doi.org/10.1063/1.2752162
74.
74.P. F. Weck and N. Balakrishnan, J. Chem. Phys. 122, 234310 (2005).
http://dx.doi.org/10.1063/1.1930847
75.
75.G. Quéméner, N. Balakrishnan, and B. K. Kendrick, Phys. Rev. A 79, 022703 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.022703
76.
76.F. Lique, M. Jorfi, P. Honvault, P. Halvick, S. Y. Lin, H. Guo, D. Q. Xie, P. J. Dagdigian, J. Klos, and M. H. Alexander, J. Chem. Phys. 131, 221104 (2009).
http://dx.doi.org/10.1063/1.3274226
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/11/10.1063/1.3357286
Loading
/content/aip/journal/jcp/132/11/10.1063/1.3357286
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/11/10.1063/1.3357286
2010-03-16
2014-11-21

Abstract

There is great interest in the production of cold molecules, at temperatures below 1 K, and ultracold molecules, at temperatures below 1 mK. Such molecules have potential applications in areas ranging from precision measurement to quantum information storage and processing, and quantum gases of ultracold polar molecules are expected to exhibit novel quantum phases. In addition, cold molecules open up a new domain for collision physics, dominated by long-range forces and scattering resonances. There have been major recent advances both in cooling molecules from room temperature and in forming molecules in ultracold atomic gases. As these techniques mature, and cold and ultracold samples are more accessible, collision studies at previously unavailable energies will be possible. This spotlight article will highlight some of the background and motivation for studying collisions at low energies and will direct readers to recent articles on the recent experimental advancements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/11/1.3357286.html;jsessionid=3bth4udpodkn0.x-aip-live-06?itemId=/content/aip/journal/jcp/132/11/10.1063/1.3357286&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cold and ultracold molecules: Spotlight on orbiting resonances
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/11/10.1063/1.3357286
10.1063/1.3357286
SEARCH_EXPAND_ITEM