Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/11/10.1063/1.3369628
1.
1.O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, Science 277, 346 (1997).
http://dx.doi.org/10.1126/science.277.5324.346
2.
2.O. L. Polyansky, A. G. Császár, S. V. Shirin, N. F. Zobov, P. Barletta, J. Tennyson, D. W. Schwenke, and P. J. Knowles, Science 299, 539 (2003).
http://dx.doi.org/10.1126/science.1079558
3.
3.C. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem. Phys. Lett. 253, 268 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00175-3
4.
4.E. Schwegler and M. Challacombe, J. Chem. Phys. 105, 2726 (1996).
http://dx.doi.org/10.1063/1.472135
5.
5.C. Ochsenfeld, J. Kussmann, and D. S. Lambrecht, Reviews in Computational Chemistry (VCH, New York, 2006), Vol. 23, pp. 182.
http://dx.doi.org/10.1002/9780470116449.ch1
6.
6.M. C. Strain, G. E. Scuseria, and M. J. Frisch, Science 271, 51 (1996).
http://dx.doi.org/10.1126/science.271.5245.51
7.
7.J. C. Burant, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 105, 8969 (1996).
http://dx.doi.org/10.1063/1.472627
8.
8.C. Ochsenfeld, C. A. White, and M. Head-Gordon, J. Chem. Phys. 109, 1663 (1998).
http://dx.doi.org/10.1063/1.476741
9.
9.S. Sæbø and P. Pulay, Chem. Phys. Lett. 113, 13 (1985).
http://dx.doi.org/10.1016/0009-2614(85)85003-X
10.
10.P. Pulay and S. Saebø, Theor. Chim. Acta 69, 357 (1986).
http://dx.doi.org/10.1007/BF00526697
11.
11.S. Saebø and P. Pulay, J. Chem. Phys. 88, 1884 (1988).
http://dx.doi.org/10.1063/1.454111
12.
12.P. E. Maslen and M. Head-Gordon, Chem. Phys. Lett. 283, 102 (1998).
http://dx.doi.org/10.1016/S0009-2614(97)01333-X
13.
13.G. Hetzer, P. Pulay, and H. -J. Werner, Chem. Phys. Lett. 290, 143 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00491-6
14.
14.G. E. Scuseria and P. Y. Ayala, J. Chem. Phys. 111, 8330 (1999).
http://dx.doi.org/10.1063/1.480174
15.
15.M. S. Lee, P. E. Maslen, and M. Head-Gordon, J. Chem. Phys. 112, 3592 (2000).
http://dx.doi.org/10.1063/1.480512
16.
16.T. D. Crawford and R. A. King, Chem. Phys. Lett. 366, 611 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01639-1
17.
17.M. Schütz, Phys. Chem. Chem. Phys. 4, 3941 (2002).
http://dx.doi.org/10.1039/b203994j
18.
18.H. -J. Werner, F. R. Manby, and P. J. Knowles, J. Chem. Phys. 118, 8149 (2003).
http://dx.doi.org/10.1063/1.1564816
19.
19.N. J. Russ and T. D. Crawford, J. Chem. Phys. 121, 691 (2004).
http://dx.doi.org/10.1063/1.1759322
20.
20.A. Venkatnathan, A. B. Szilva, D. Walter, R. J. Gdanitz, and E. A. Carter, J. Chem. Phys. 120, 1693 (2004).
http://dx.doi.org/10.1063/1.1635796
21.
21.W. Yang, Phys. Rev. Lett. 66, 1438 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1438
22.
22.W. Yang and T. S. Lee, J. Chem. Phys. 103, 5674 (1995).
http://dx.doi.org/10.1063/1.470549
23.
23.K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi, Chem. Phys. Lett. 313, 701 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00874-X
24.
24.Y. Komeiji, T. Nakano, K. Fukuzawa, Y. Ueno, Y. Inadomi, T. Nemoto, M. Uebaysai, D. G. Fedorov, and K. Kitaura, Chem. Phys. Lett. 372, 342 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00430-5
25.
25.D. G. Fedorov and K. Kitaura, Chem. Phys. Lett. 433, 182 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.10.052
26.
26.M. Kobayashi and H. Nakai, Int. J. Quantum Chem. 109, 2227 (2009).
http://dx.doi.org/10.1002/qua.22111
27.
27.W. Li, P. Piecuch, J. R. Gour, and S. Li, J. Chem. Phys. 131, 114109 (2009).
http://dx.doi.org/10.1063/1.3218842
28.
28.J. L. Whitten, J. Chem. Phys. 58, 4496 (1973).
http://dx.doi.org/10.1063/1.1679012
29.
29.O. Vahtras, J. Almlöf, and M. W. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).
http://dx.doi.org/10.1016/0009-2614(93)89151-7
30.
30.B. I. Dunlap, W. D. Connolly, and J. R. Sabin, Int. J. Quantum Chem., Symp. 11, 81 (1977).
http://dx.doi.org/10.1002/qua.560110108
31.
31.A. P. Rendell and T. J. Lee, J. Chem. Phys. 101, 400 (1994).
http://dx.doi.org/10.1063/1.468148
32.
32.R. A. Kendall and H. A. Fruchtl, Theor. Chem. Acc. 97, 158 (1997).
http://dx.doi.org/10.1007/s002140050249
33.
33.F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).
http://dx.doi.org/10.1039/b204199p
34.
34.T. J. Martinez and E. A. Carter, in Modern Electronic Structure Theory, Advanced Series in Physical Chemistry Vol. 2, edited by D. R. Yarkony (World Scientific, Singapore, 1995), pp. 11321165.
35.
35.R. A. Friesner, R. B. Murphy, M. D. Beachy, M. N. Ringnalda, W. T. Pollard, B. D. Dunietz, and Y. Cao, J. Phys. Chem. A 103, 1913 (1999).
http://dx.doi.org/10.1021/jp9825157
36.
36.N. H. F. Beebe and J. Linderberg, Int. J. Quantum Chem. 12, 683 (1977).
http://dx.doi.org/10.1002/qua.560120408
37.
37.I. Roeggen and E. Wisloff-Nilssen, Chem. Phys. Lett. 132, 154 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80099-9
38.
38.H. Koch, A. S. de Meras, and T. B. Pedersen, J. Chem. Phys. 118, 9481 (2003).
http://dx.doi.org/10.1063/1.1578621
39.
39.F. Aquilante, T. B. Pedersen, and R. Lindh, J. Chem. Phys. 126, 194106 (2007).
http://dx.doi.org/10.1063/1.2736701
40.
40.F. Aquilante, L. Gagliardi, T. B. Pedersen, and R. Lindh, J. Chem. Phys. 130, 154107 (2009).
http://dx.doi.org/10.1063/1.3116784
41.
41.F. Weigend, M. Kattannek, and R. Ahlrichs, J. Chem. Phys. 130, 164106 (2009).
http://dx.doi.org/10.1063/1.3116103
42.
42.C. Hättig, Phys. Chem. Chem. Phys. 7, 59 (2005).
http://dx.doi.org/10.1039/b415208e
43.
43.C. D. Sherrill, T. Takatani, and E. G. Hohenstein, J. Phys. Chem. A 113, 10146 (2009).
http://dx.doi.org/10.1021/jp9034375
44.
44.J. Zienau, L. Clin, B. Doser, and C. Ochsenfeld, J. Chem. Phys. 130, 204112 (2009).
http://dx.doi.org/10.1063/1.3142592
45.
45.B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. (Washington, D.C.) 94, 1887 (1994).
http://dx.doi.org/10.1021/cr00031a008
46.
46.A. Heßelmann, G. Jansen, and M. Schütz, J. Chem. Phys. 122, 014103 (2005).
http://dx.doi.org/10.1063/1.1824898
47.
47.R. Bukowski, R. Podeszwa, and K. Szalewicz, Chem. Phys. Lett. 414, 111 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.08.048
48.
48.R. Podeszwa and K. Szalewicz, Chem. Phys. Lett. 412, 488 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.07.029
49.
49.H. L. Williams and C. F. Chabalowski, J. Phys. Chem. A 105, 646 (2001).
http://dx.doi.org/10.1021/jp003883p
50.
50.G. Jansen and A. Hesselmann, J. Phys. Chem. A 105, 11156 (2001).
http://dx.doi.org/10.1021/jp0112774
51.
51.T. Korona, A. Hesselmann, and H. Dodziuk, J. Chem. Theory Comput. 5, 1585 (2009).
http://dx.doi.org/10.1021/ct900108f
52.
52.E. G. Hohenstein and C. D. Sherrill, “Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and application to probe the nature of interactions in linear acenes,” J. Chem. Phys. (submitted).
53.
53.T. S. Chwee and E. A. Carter, J. Chem. Phys. 132, 074104 (2010).
http://dx.doi.org/10.1063/1.3315419
54.
54.R. Jurgens-Lutovsky and J. Almlöf, Chem. Phys. Lett. 178, 451 (1991).
http://dx.doi.org/10.1016/0009-2614(91)87001-R
55.
55.K. Wolinski and P. Pulay, J. Chem. Phys. 118, 9497 (2003).
http://dx.doi.org/10.1063/1.1562606
56.
56.W. Z. Liang and M. Head-Gordon, J. Phys. Chem. A 108, 3206 (2004).
http://dx.doi.org/10.1021/jp0374713
57.
57.R. P. Steele, R. A. DiStasio, Y. Shao, J. Kong, and M. Head-Gordon, J. Chem. Phys. 125, 074108 (2006).
http://dx.doi.org/10.1063/1.2234371
58.
58.J. Deng, A. T. B. Gilbert, and P. M. W. Gill, J. Chem. Phys. 130, 231101 (2009).
http://dx.doi.org/10.1063/1.3152864
59.
59.R. P. Steele, R. A. DiStasio, and M. Head-Gordon, J. Chem. Theory Comput. 5, 1560 (2009).
http://dx.doi.org/10.1021/ct900058p
60.
60.K. Cho, T. A. Arias, J. D. Joannopoulos, and P. K. Lam, Phys. Rev. Lett. 71, 1808 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1808
61.
61.H. J. Flad, W. Hackbusch, D. Kolb, and R. Schneider, J. Chem. Phys. 116, 9641 (2002).
http://dx.doi.org/10.1063/1.1476008
62.
62.R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan, and G. Beylkin, J. Chem. Phys. 121, 11587 (2004).
http://dx.doi.org/10.1063/1.1791051
63.
63.S. Nagy and J. Pipek, Theor. Chem. Acc. 125, 471 (2010).
http://dx.doi.org/10.1007/s00214-009-0653-6
64.
64.C. D. Sherrill, in Annual Reports in Computational Chemistry, edited by D. Spellmeyer (Elsevier, Amsterdam, 2005), Vol. 1, pp. 4554.
65.
65.H. -J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
http://dx.doi.org/10.1063/1.455556
66.
66.C. W. Bauschlicher and H. Partridge, Theor. Chim. Acta 85, 255 (1993).
http://dx.doi.org/10.1007/BF01129115
67.
67.R. J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143, 413 (1988).
http://dx.doi.org/10.1016/0009-2614(88)87388-3
68.
68.P. G. Szalay and R. J. Bartlett, J. Chem. Phys. 103, 3600 (1995).
http://dx.doi.org/10.1063/1.470243
69.
69.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
70.
70.R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
71.
71.K. Andersson and B. O. Roos, in Modern Electronic Structure Theory, Advanced Series in Physical Chemistry Vol. 2, edited by D. R. Yarkony (World Scientific, Singapore, 1995), pp. 55109.
72.
72.B. O. Roos, K. Andersson, M. P. Fülscher, P. -Å. Malmqvist, L. Serrano-Andrés, K. Pierloot, and M. Merchán, in New Methods in Computational Quantum Chemistry, Advances in Chemical Physics Vol. 93, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1996), pp. 219332.
73.
73.M. Schüler, T. Kovar, H. Lischka, R. Shepard, and R. J. Harrison, Theor. Chim. Acta 84, 489 (1993).
http://dx.doi.org/10.1007/BF01126612
74.
74.T. J. Martinez and E. A. Carter, J. Chem. Phys. 102, 7564 (1995).
http://dx.doi.org/10.1063/1.469088
75.
75.G. Reynolds, T. J. Martinez, and E. A. Carter, J. Chem. Phys. 105, 6455 (1996).
http://dx.doi.org/10.1063/1.472495
76.
76.T. S. Chwee, A. B. Szilva, R. Lindh, and E. A. Carter, J. Chem. Phys. 128, 224106 (2008).
http://dx.doi.org/10.1063/1.2937443
77.
77.F. A. Evangelista, W. D. Allen, and H. F. Schaefer, J. Chem. Phys. 127, 024102 (2007).
http://dx.doi.org/10.1063/1.2743014
78.
78.F. A. Evangelista, A. C. Simmonett, W. D. Allen, H. F. Schaefer, and J. Gauss, J. Chem. Phys. 128, 124104 (2008).
http://dx.doi.org/10.1063/1.2834927
79.
79.F. A. Evangelista, A. C. Simmonett, H. F. Schaefer, D. Mukherjee, and W. D. Allen, Phys. Chem. Chem. Phys. 11, 4728 (2009).
http://dx.doi.org/10.1039/b822910d
80.
80.E. Prochnow, F. A. Evangelista, H. F. Schaefer, W. D. Allen, and J. Gauss, J. Chem. Phys. 131, 064109 (2009).
http://dx.doi.org/10.1063/1.3204017
81.
81.X. Li and J. Paldus, Can. J. Chem. 87, 917 (2009).
http://dx.doi.org/10.1139/V09-029
82.
82.T. V. Van Voorhis and M. Head-Gordon, Chem. Phys. Lett. 317, 575 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01413-X
83.
83.T. V. Van Voorhis and M. Head-Gordon, J. Chem. Phys. 117, 9190 (2002).
http://dx.doi.org/10.1063/1.1515319
84.
84.G. J. O. Beran, B. Austin, A. Sodt, and M. Head-Gordon, J. Phys. Chem. A 109, 9183 (2005).
http://dx.doi.org/10.1021/jp053780c
85.
85.A. I. Krylov, C. D. Sherrill, E. F. C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 10669 (1998).
http://dx.doi.org/10.1063/1.477764
86.
86.J. A. Parkhill, K. Lawier, and M. Head-Gordon, J. Chem. Phys. 130, 084101 (2009).
http://dx.doi.org/10.1063/1.3086027
87.
87.A. I. Krylov, Chem. Phys. Lett. 338, 375 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00287-1
88.
88.A. I. Krylov, Acc. Chem. Res. 39, 83 (2006).
http://dx.doi.org/10.1021/ar0402006
89.
89.A. I. Krylov, Chem. Phys. Lett. 350, 522 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01316-1
90.
90.A. I. Krylov and C. D. Sherrill, J. Chem. Phys. 116, 3194 (2002).
http://dx.doi.org/10.1063/1.1445116
91.
91.J. S. Sears, C. D. Sherrill, and A. I. Krylov, J. Chem. Phys. 118, 9084 (2003).
http://dx.doi.org/10.1063/1.1568735
92.
92.S. V. Levchenko and A. I. Krylov, J. Chem. Phys. 120, 175 (2004).
http://dx.doi.org/10.1063/1.1630018
93.
93.Y. H. Shao, M. Head-Gordon, and A. I. Krylov, J. Chem. Phys. 118, 4807 (2003).
http://dx.doi.org/10.1063/1.1545679
94.
94.K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000).
http://dx.doi.org/10.1063/1.481769
95.
95.P. Piecuch, K. Kowalski, I. S. O. Pimienta, and M. J. McGuire, Int. Rev. Phys. Chem. 21, 527 (2002).
http://dx.doi.org/10.1080/0144235021000053811
96.
96.P. Piecuch and M. Wloch, J. Chem. Phys. 123, 224105 (2005).
http://dx.doi.org/10.1063/1.2137318
97.
97.K. Kowalski and P. Piecuch, Chem. Phys. Lett. 344, 165 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00730-8
98.
98.C. D. Sherrill and P. Piecuch, J. Chem. Phys. 122, 124104 (2005).
http://dx.doi.org/10.1063/1.1867379
99.
99.Y. Ge, M. S. Gordon, and P. Piecuch, J. Chem. Phys. 127, 174106 (2007).
http://dx.doi.org/10.1063/1.2778419
100.
100.S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.2863
101.
101.S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).
http://dx.doi.org/10.1063/1.478295
102.
102.G. K.-L. Chan, M. Kállay, and J. Gauss, J. Chem. Phys. 121, 6110 (2004).
http://dx.doi.org/10.1063/1.1783212
103.
103.J. Hachmann, J. J. Dorando, M. Aviles, and G. K. Chan, J. Chem. Phys. 127, 134309 (2007).
http://dx.doi.org/10.1063/1.2768362
104.
104.T. Yanai and G. K. L. Chan, J. Chem. Phys. 124, 194106 (2006).
http://dx.doi.org/10.1063/1.2196410
105.
105.F. Colmenero, C. P. Delvalle, and C. Valdemoro, Phys. Rev. A 47, 971 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.971
106.
106.H. Nakatsuji and K. Yasuda, Phys. Rev. Lett. 76, 1039 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1039
107.
107.D. A. Mazziotti, Phys. Rev. A 57, 4219 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.4219
108.
108.M. Nooijen, M. Wladyslawski, and A. Hazra, J. Chem. Phys. 118, 4832 (2003).
http://dx.doi.org/10.1063/1.1545779
109.
109.D. A. Mazziotti, Acc. Chem. Res. 39, 207 (2006).
http://dx.doi.org/10.1021/ar050029d
110.
110.T. Juhász and D. A. Mazziotti, J. Chem. Phys. 121, 1201 (2004).
http://dx.doi.org/10.1063/1.1760748
111.
111.R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry Vol. 16 (Oxford, New York, 1989.
112.
112.A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
113.
113.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
114.
114.S. Kristyán and P. Pulay, Chem. Phys. Lett. 229, 175 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01027-7
115.
115.S. Tsuzuki and H. P. Lüthi, J. Chem. Phys. 114, 3949 (2001).
http://dx.doi.org/10.1063/1.1344891
116.
116.E. R. Johnson, R. A. Wolkow, and G. A. DiLabio, Chem. Phys. Lett. 394, 334 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.029
117.
117.E. R. Johnson, A. D. Becke, C. D. Sherrill, and G. A. DiLabio, J. Chem. Phys. 131, 034111 (2009).
http://dx.doi.org/10.1063/1.3177061
118.
118.M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras, J. Chem. Phys. 114, 5149 (2001).
http://dx.doi.org/10.1063/1.1329889
119.
119.X. Wu, M. C. Vargas, S. Nayak, V. Lotrich, and G. Scoles, J. Chem. Phys. 115, 8748 (2001).
http://dx.doi.org/10.1063/1.1412004
120.
120.Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).
http://dx.doi.org/10.1063/1.1424928
121.
121.A. Kumar, M. Elstner, and S. Suhai, Int. J. Quantum Chem. 95, 44 (2003).
http://dx.doi.org/10.1002/qua.10715
122.
122.C. Gonzalez and E. C. Lim, J. Phys. Chem. A 107, 10105 (2003).
http://dx.doi.org/10.1021/jp030587e
123.
123.S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
124.
124.U. Zimmerli, M. Parrinello, and P. Koumoutsakos, J. Chem. Phys. 120, 2693 (2004).
http://dx.doi.org/10.1063/1.1637034
125.
125.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
126.
126.P. Jurečka, J. Cerny, P. Hobza, and D. R. Salahub, J. Comput. Chem. 28, 555 (2007).
http://dx.doi.org/10.1002/jcc.20570
127.
127.M. Kabeláč, H. Valdes, E. C. Sherer, C. J. Cramer, and P. Hobza, Phys. Chem. Chem. Phys. 9, 5000 (2007).
http://dx.doi.org/10.1039/b707182e
128.
128.C. A. Morgado, J. P. McNamara, I. H. Hillier, N. A. Burton, and M. A. Vincent, J. Chem. Theory Comput. 3, 1656 (2007).
http://dx.doi.org/10.1021/ct700072a
129.
129.E. Tapavicza, I. -C. Lin, A. von Lilenfeld, I. Tavernelli, M. D. Coutinho-Neto, and U. Rothlisberger, J. Chem. Theory Comput. 3, 1673 (2007).
http://dx.doi.org/10.1021/ct700049s
130.
130.K. E. Riley, J. Vondrasek, and P. Hobza, Phys. Chem. Chem. Phys. 9, 5555 (2007).
http://dx.doi.org/10.1039/b708089a
131.
131.J. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
http://dx.doi.org/10.1039/b810189b
132.
132.A. Vázquez-Mayagoitia, C. D. Sherrill, E. Aprà, and B. G. Sumpter, J. Chem. Theory Comput. 6, 727 (2010).
http://dx.doi.org/10.1021/ct900551z
133.
133.O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. Lett. 93, 153004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.153004
134.
134.O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. B 71, 195119 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195119
135.
135.M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
136.
136.A. D. Becke and E. R. Johnson, J. Chem. Phys. 123, 154101 (2005).
http://dx.doi.org/10.1063/1.2065267
137.
137.E. R. Johnson and A. D. Becke, J. Chem. Phys. 123, 024101 (2005).
http://dx.doi.org/10.1063/1.1949201
138.
138.A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 014104 (2006).
http://dx.doi.org/10.1063/1.2139668
139.
139.A. Puzder, M. Dion, and D. C. Langreth, J. Chem. Phys. 124, 164105 (2006).
http://dx.doi.org/10.1063/1.2189229
140.
140.T. Thonhauser, A. Puzder, and D. C. Langreth, J. Chem. Phys. 124, 164106 (2006).
http://dx.doi.org/10.1063/1.2189230
141.
141.A. Görling and M. Levy, Phys. Rev. B 47, 13105 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.13105
142.
142.A. M. Teale, S. Coriani, and T. Helgaker, J. Chem. Phys. 130, 104111 (2009).
http://dx.doi.org/10.1063/1.3082285
143.
143.S. Grimme, J. Chem. Phys. 124, 034108 (2006).
http://dx.doi.org/10.1063/1.2148954
144.
144.T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007).
http://dx.doi.org/10.1039/b704725h
145.
145.A. Tarnopolsky, A. Karton, R. Sertchook, D. Vuzman, and J. M. L. Martin, J. Phys. Chem. A 112, 3 (2008).
http://dx.doi.org/10.1021/jp710179r
146.
146.A. Karton, A. Tarnopolsky, J. Lamere, G. C. Schatz, and J. M. L. Martin, J. Phys. Chem. A 112, 12868 (2008).
http://dx.doi.org/10.1021/jp801805p
147.
147.Y. Zhang, X. Xu, and W. A. Goddard, Proc. Natl. Acad. Sci. U.S.A. 106, 4963 (2009).
http://dx.doi.org/10.1073/pnas.0901093106
148.
148.J. Chai and M. Head-Gordon, J. Chem. Phys. 131, 174105 (2009).
http://dx.doi.org/10.1063/1.3244209
149.
149.X. Xu and W. A. Goddard, Proc. Natl. Acad. Sci. U.S.A. 101, 2673 (2004).
http://dx.doi.org/10.1073/pnas.0308730100
150.
150.Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 109, 5656 (2005).
http://dx.doi.org/10.1021/jp050536c
151.
151.Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).
http://dx.doi.org/10.1021/ct0502763
152.
152.Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 3, 289 (2007).
http://dx.doi.org/10.1021/ct6002719
153.
153.W. Klopper, F. R. Manby, S. Ten-no, and E. F. Valeev, Int. Rev. Phys. Chem. 25, 427 (2006).
http://dx.doi.org/10.1080/01442350600799921
154.
154.E. A. Hylleraas, Z. Phys. 54, 347 (1929).
http://dx.doi.org/10.1007/BF01375457
155.
155.W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94, 1985 (1991).
http://dx.doi.org/10.1063/1.459921
156.
156.W. Klopper, Chem. Phys. Lett. 186, 583 (1991).
http://dx.doi.org/10.1016/0009-2614(91)90471-K
157.
157.V. Termath, W. Klopper, and W. Kutzelnigg, J. Chem. Phys. 94, 2002 (1991).
http://dx.doi.org/10.1063/1.459922
158.
158.J. Noga, W. Kutzelnigg, and W. Klopper, Chem. Phys. Lett. 199, 497 (1992).
http://dx.doi.org/10.1016/0009-2614(92)87034-M
159.
159.J. Noga and W. Kutzelnigg, J. Chem. Phys. 101, 7738 (1994).
http://dx.doi.org/10.1063/1.468266
160.
160.J. Noga and P. Valiron, Chem. Phys. Lett. 324, 166 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00600-X
161.
161.E. F. Valeev and H. F. Schaefer, J. Chem. Phys. 113, 3990 (2000).
http://dx.doi.org/10.1063/1.1288375
162.
162.W. Klopper and C. C. M. Samson, J. Chem. Phys. 116, 6397 (2002).
http://dx.doi.org/10.1063/1.1461814
163.
163.W. Klopper, J. Chem. Phys. 120, 10890 (2004).
http://dx.doi.org/10.1063/1.1742904
164.
164.E. F. Valeev, Chem. Phys. Lett. 395, 190 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.061
165.
165.S. Ten-no, Chem. Phys. Lett. 398, 56 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.041
166.
166.E. F. Valeev, J. Chem. Phys. 125, 244106 (2006).
http://dx.doi.org/10.1063/1.2403852
167.
167.T. Shiozaki, E. F. Valeev, and S. Hirata, J. Chem. Phys. 131, 044118 (2009).
http://dx.doi.org/10.1063/1.3193463
168.
168.M. Torheyden and E. F. Valeev, J. Chem. Phys. 131, 171103 (2009).
http://dx.doi.org/10.1063/1.3254836
169.
169.K. A. Peterson, T. B. Adler, and H. Werner, J. Chem. Phys. 128, 084102 (2008).
http://dx.doi.org/10.1063/1.2831537
170.
170.K. E. Yousaf and K. A. Peterson, J. Chem. Phys. 129, 184108 (2008).
http://dx.doi.org/10.1063/1.3009271
171.
171.K. E. Yousaf and K. A. Peterson, Chem. Phys. Lett. 476, 303 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.06.003
172.
172.A. Warshel and A. Bromberg, J. Chem. Phys. 52, 1262 (1970).
http://dx.doi.org/10.1063/1.1673124
173.
173.M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma, J. Phys. Chem. 100, 19357 (1996).
http://dx.doi.org/10.1021/jp962071j
174.
174.N. Reuter, A. Dejaegere, B. Maigret, and M. Karplus, J. Phys. Chem. A 104, 1720 (2000).
http://dx.doi.org/10.1021/jp9924124
175.
175.T. Vreven, K. Morokuma, O. Farkas, H. B. Schlegel, and M. J. Frisch, J. Comput. Chem. 24, 760 (2003).
http://dx.doi.org/10.1002/jcc.10156
176.
176.B. Hopkins and G. S. Tschumper, Mol. Phys. 103, 309 (2005).
http://dx.doi.org/10.1080/00268970512331317291
177.
177.R. C. Walker, M. F. Crowley, and D. A. Case, J. Comput. Chem. 29, 1019 (2008).
http://dx.doi.org/10.1002/jcc.20857
178.
178.J. H. Jensen and M. S. Gordon, Mol. Phys. 89, 1313 (1996).
http://dx.doi.org/10.1080/00268979609482543
179.
179.M. S. Gordon, M. A. Freitag, P. Bandyopadhyay, J. H. Jensen, V. Kairys, and W. J. Stevens, J. Phys. Chem. A 105, 293 (2001).
http://dx.doi.org/10.1021/jp002747h
180.
180.L. V. Slipchenko and M. S. Gordon, J. Comput. Chem. 28, 276 (2007).
http://dx.doi.org/10.1002/jcc.20520
181.
181.L. V. Slipchenko and M. S. Gordon, Mol. Phys. 107, 999 (2009).
http://dx.doi.org/10.1080/00268970802712449
182.
182.C. L. Janssen and I. M. B. Nielsen, Parallel Computing in Quantum Chemistry (CRC, Boca Raton, FL, 2008).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/11/10.1063/1.3369628
Loading
/content/aip/journal/jcp/132/11/10.1063/1.3369628
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/11/10.1063/1.3369628
2010-03-18
2016-12-05

Abstract

Current and emerging research areas in electronic structuretheory promise to greatly extend the scope and quality of quantum chemical computations. Two particularly challenging problems are the accurate description of electronic near-degeneracies (as occur in bond-breaking reactions, first-row transition elements, etc.) and the description of long-range dispersion interactions in density functional theory. Additionally, even with the emergence of reduced-scaling electronic structure methods and basis set extrapolation techniques, quantum chemical computations remain very time-consuming for large molecules or large basis sets. A variety of techniques, including density fitting and explicit correlation methods, are making rapid progress toward solving these challenges.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/11/1.3369628.html;jsessionid=dLoeBRbFFcwHo-E3wuzOD9v-.x-aip-live-06?itemId=/content/aip/journal/jcp/132/11/10.1063/1.3369628&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/11/10.1063/1.3369628&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/11/10.1063/1.3369628'
Right1,Right2,Right3,