Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/12/10.1063/1.3373178
1.
1.W. L. Hough and R. D. Rogers, Bull. Chem. Soc. Jpn. 80, 2262 (2007).
http://dx.doi.org/10.1246/bcsj.80.2262
2.
2.P. M. Dean, J. Turanjanin, M. Yoshizawa-Fujita, D. R. MacFarlane, and J. L. Scott, Cryst. Growth Des. 9, 1137 (2009).
http://dx.doi.org/10.1021/cg8009496
3.
3.Z. Wojnarowska, M. Paluch, A. Grzybowski, K. Adrjanowicz, K. Grzybowska, K. Kaminski, P. Wlodarczyk, and J. Pionteck, J. Chem. Phys. 131, 104505 (2009).
http://dx.doi.org/10.1063/1.3223540
4.
4.N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodriguez, and R. D. Rogers, Green Chem. 11, 646 (2009).
http://dx.doi.org/10.1039/b822702k
5.
5.S. S. Y. Tan, D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, J. M. Pringle, and J. L. Scott, Green Chem. 11, 339 (2009).
http://dx.doi.org/10.1039/b815310h
6.
6.H. Ohno, Electrochemical Aspects of Ionic Liquids (John Wiley & Sons, New York, 2005).
http://dx.doi.org/10.1002/0471762512
7.
7.T. Tsuda and C. L. Hussey, Electrochem. Soc. Interface 16, 42 (2007).
8.
8.D. R. MacFarlane, M. Forsyth, P. C. Howlett, J. M. Pringle, J. Sun, G. Annat, W. Neil, and E. I. Izgorodina, Acc. Chem. Res. 40, 1165 (2007).
http://dx.doi.org/10.1021/ar7000952
9.
9.P. Hapiot and C. Lagrost, Chem. Rev. 108, 2238 (2008).
http://dx.doi.org/10.1021/cr0680686
10.
10.N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev. 37, 123 (2008).
http://dx.doi.org/10.1039/b006677j
11.
11.P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg) 8, 405 (1914).
12.
12.K. S. Pitzer, J. Phys. Chem. 88, 2689 (1984).
http://dx.doi.org/10.1021/j150657a005
13.
13.M. Revere and M. P. Tosi, Rep. Prog. Phys. 49, 1001 (1986).
http://dx.doi.org/10.1088/0034-4885/49/9/002
14.
14.M. P. Tosi, D. L. Price, and M. -L. Saboungi, Annu. Rev. Phys. Chem. 44, 173 (1993).
http://dx.doi.org/10.1146/annurev.pc.44.100193.001133
15.
15.M. Saboungi and A. Rahman, J. Chem. Phys. 65, 2393 (1976).
http://dx.doi.org/10.1063/1.433355
16.
16.F. Lantelme and P. Turq, J. Chem. Phys. 81, 5046 (1984).
http://dx.doi.org/10.1063/1.447492
17.
17.R. La Violette, J. Budzien, and F. Stillinger, J. Chem. Phys. 112, 8072 (2000).
http://dx.doi.org/10.1063/1.481406
18.
18.A. Aguado, W. Scott, and P. A. Madden, J. Chem. Phys. 115, 8612 (2001).
http://dx.doi.org/10.1063/1.1410394
19.
19.A. Aguado, M. Wilson, and P. A. Madden, J. Chem. Phys. 115, 8603 (2001).
http://dx.doi.org/10.1063/1.1410393
20.
20.S. Hazebroucq, G. Picard, C. Adamo, T. Heine, S. Gemming, and G. Seifert, J. Chem. Phys. 123, 134510 (2005).
http://dx.doi.org/10.1063/1.2038888
21.
21.N. Galamba and B. J. C. Cabral, J. Chem. Phys. 126, 124502 (2007).
http://dx.doi.org/10.1063/1.2711187
22.
22.J. F. Wishart, Energy Environ. Sci. 2, 956 (2009).
http://dx.doi.org/10.1039/b906273d
23.
23.Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities. Properties and Structure, ACS Symposium Series Vol. 901, edited by R. D. Rogers and K. R. Seddon (American Chemical Society, Washington DC, 2005).
24.
24.Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities. Transformations and Progress, ACS Symposium Series Vol. 902, edited by R. D. Rogers and K. R. Seddon (American Chemical Society, Washington DC, 2005).
25.
25.Ionic Liquids in Polymer Systems: Solvents, Additives, and Novel Applications, ACS Symposium Series Vol. 913, edited by C. S. Brazel and R. D. Rogers (American Chemical Society, Washington DC, 2005).
26.
26.H. -O. Hamaguchi and R. Ozawa, Adv. Chem. Phys. 131, 85 (2005).
http://dx.doi.org/10.1002/0471739464.ch3
27.
27.M. N. Kobrak, Adv. Chem. Phys. 139, 85 (2008).
http://dx.doi.org/10.1002/9780470259498.ch2
28.
28.J. F. Wishart and E. W. Castner, Jr., J. Phys. Chem. B 111, 4639 (2007).
http://dx.doi.org/10.1021/jp072262u
29.
29.R. D. Rogers and G. A. Voth, Acc. Chem. Res. 40, 1077 (2007).
http://dx.doi.org/10.1021/ar700221n
30.
30.F. Endres, Phys. Chem. Chem. Phys. 12, 1724 (2010).
http://dx.doi.org/10.1039/b923527m
31.
31.C. Schröder, T. Rudas, G. Neumayr, W. Gansterer, and O. Steinhauser, J. Chem. Phys. 127, 044505 (2007).
http://dx.doi.org/10.1063/1.2754690
32.
32.C. Hardacre, J. D. Holbrey, S. E. J. McMath, D. T. Bowron, and A. K. Soper, J. Chem. Phys. 118, 273 (2003).
http://dx.doi.org/10.1063/1.1523917
33.
33.C. Schröder, T. Rudas, and O. Steinhauser, J. Chem. Phys. 125, 244506 (2006).
http://dx.doi.org/10.1063/1.2404674
34.
34.S. Urahata and M. Ribeiro, J. Chem. Phys. 120, 1855 (2004).
http://dx.doi.org/10.1063/1.1635356
35.
35.B. L. Bhargava and S. Balasubramanian, J. Chem. Phys. 127, 114510 (2007).
http://dx.doi.org/10.1063/1.2772268
36.
36.H. V. Spohr and G. N. Patey, J. Chem. Phys. 130, 104506 (2009).
http://dx.doi.org/10.1063/1.3078381
37.
37.H. Li and M. N. Kobrak, J. Chem. Phys. 131, 194507 (2009).
http://dx.doi.org/10.1063/1.3263129
38.
38.Y. Wang, W. Jiang, T. Yan, and G. A. Voth, Acc. Chem. Res. 40, 1193 (2007).
http://dx.doi.org/10.1021/ar700160p
39.
39.J. N. A. Canongia Lopes and A. A. H. Pádua, J. Phys. Chem. B 110, 3330 (2006).
http://dx.doi.org/10.1021/jp056006y
40.
40.A. A. H. Pádua, M. F. Costa Gomes, and J. N. A. Canongia Lopes, Acc. Chem. Res. 40, 1087 (2007).
http://dx.doi.org/10.1021/ar700050q
41.
41.A. Triolo, O. Russina, H. -J. Bleif, and E. Di Cola, J. Phys. Chem. B 111, 4641 (2007).
http://dx.doi.org/10.1021/jp067705t
42.
42.O. Russina, A. Triolo, L. Gontrani, R. Caminiti, D. Xiao, L. G. Hines, Jr., R. A. Bartsch, E. L. Quitevis, N. Pleckhova, and K. R. Seddon, J. Phys.: Condens. Matter 21, 424121 (2009).
http://dx.doi.org/10.1088/0953-8984/21/42/424121
43.
43.A. Triolo, O. Russina, B. Fazio, G. B. Appetecchi, M. Carewska, and S. Passerini, J. Chem. Phys. 130, 164521 (2009).
http://dx.doi.org/10.1063/1.3119977
44.
44.K. Fujii, S. Seki, S. Fukuda, T. Takamuku, S. Kohara, Y. Kameda, Y. Umebayashi, and S. Ishiguro, J. Mol. Liq. 143, 64 (2008).
http://dx.doi.org/10.1016/j.molliq.2008.05.011
45.
45.S. Fukuda, M. Takeuchi, K. Fujii, R. Kanzaki, T. Takamuku, K. Chiba, H. Yamamoto, Y. Umebayashi, and S. i. Ishiguro, J. Mol. Liq. 143, 2 (2008).
http://dx.doi.org/10.1016/j.molliq.2008.02.012
46.
46.T. Pott and P. Méléard, Phys. Chem. Chem. Phys. 11, 5469 (2009).
http://dx.doi.org/10.1039/b901582e
47.
47.R. Atkin and G. G. Warr, J. Phys. Chem. B 112, 4164 (2008).
http://dx.doi.org/10.1021/jp801190u
48.
48.W. A. Henderson, V. G. Young, W. Pearson, S. Passerini, H. C. De Long, and P. C. Trulove, J. Phys.: Condens. Matter 18, 10377 (2006).
http://dx.doi.org/10.1088/0953-8984/18/46/006
49.
49.W. A. Henderson and S. Passerini, Chem. Mater. 16, 2881 (2004).
http://dx.doi.org/10.1021/cm049942j
50.
50.T. Endo and K. Nishikawa, J. Phys. Chem. A 112, 7543 (2008).
http://dx.doi.org/10.1021/jp8031989
51.
51.K. Nishikawa, S. L. Wang, H. Katayanagi, S. Hayashi, H. O. Hamaguchi, Y. Koga, and K. I. Tozaki, J. Phys. Chem. B 111, 4894 (2007).
http://dx.doi.org/10.1021/jp0671852
52.
52.S. Jayaraman and E. J. Maginn, J. Chem. Phys. 127, 214504 (2007).
http://dx.doi.org/10.1063/1.2801539
53.
53.J. Leys, M. Wubbenhorst, C. P. Menon, R. Rajesh, J. Thoen, C. Glorieux, P. Nockemann, B. Thijs, K. Binnemans, and S. Longuemart, J. Chem. Phys. 128, 064509 (2008).
http://dx.doi.org/10.1063/1.2827462
54.
54.H. Shirota, J. F. Wishart, and E. W. Castner, J. Phys. Chem. B 111, 4819 (2007).
http://dx.doi.org/10.1021/jp067126o
55.
55.H. Li, M. Ibrahim, I. Agberemi, and M. N. Kobrak, J. Chem. Phys. 129, 124507 (2008).
http://dx.doi.org/10.1063/1.2978378
56.
56.C. M. Roland, S. Bair, and R. Casalini, J. Chem. Phys. 125, 124508 (2006).
http://dx.doi.org/10.1063/1.2346679
57.
57.K. R. Harris, J. Chem. Phys. 131, 054503 (2009).
http://dx.doi.org/10.1063/1.3183951
58.
58.S. H. Chung, R. Lopato, S. G. Greenbaum, H. Shirota, E. W. Castner, and J. F. Wishart, J. Phys. Chem. B 111, 4885 (2007).
http://dx.doi.org/10.1021/jp071755w
59.
59.Y. Nishiyama, M. Fukuda, M. Terazima, and Y. Kimura, J. Chem. Phys. 128, 164514 (2008).
http://dx.doi.org/10.1063/1.2901973
60.
60.A. Noda, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B 105, 4603 (2001).
http://dx.doi.org/10.1021/jp004132q
61.
61.H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, and M. Watanabe, J. Phys. Chem. B 109, 6103 (2005).
http://dx.doi.org/10.1021/jp044626d
62.
62.H. Tokuda, H. Kikuko, K. Ishii, M. A. B. H. Susan, and M. Watanabe, J. Phys. Chem. B 108, 16593 (2004).
http://dx.doi.org/10.1021/jp047480r
63.
63.H. Tokuda, K. Ishii, M. A. B. H. Susan, S. Tsuzuki, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B 110, 2833 (2006).
http://dx.doi.org/10.1021/jp053396f
64.
64.H. Tokuda, S. Tsuzuki, M. A. B. H. Susan, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B 110, 19593 (2006).
http://dx.doi.org/10.1021/jp064159v
65.
65.J. Sangoro, C. Iacob, A. Serghei, S. Naumov, P. Galvosas, J. Kaerger, C. Wespe, F. Bordusa, A. Stoppa, J. Hunger, R. Buchner, and F. Kremer, J. Chem. Phys. 128, 214509 (2008).
http://dx.doi.org/10.1063/1.2921796
66.
66.B. Bhargava and S. Balasubramanian, J. Chem. Phys. 123, 144505 (2005).
http://dx.doi.org/10.1063/1.2041487
67.
67.S. Urahata and M. Ribeiro, J. Chem. Phys. 122, 024511 (2005).
http://dx.doi.org/10.1063/1.1826035
68.
68.A. Aguado and P. A. Madden, J. Chem. Phys. 119, 7471 (2003).
http://dx.doi.org/10.1063/1.1605941
69.
69.Y. Shim, J. Duan, M. Choi, and H. Kim, J. Chem. Phys. 119, 6411 (2003).
http://dx.doi.org/10.1063/1.1611875
70.
70.Y. Shim, M. Choi, and H. Kim, J. Chem. Phys. 122, 044511 (2005).
http://dx.doi.org/10.1063/1.1819318
71.
71.Y. Shim, M. Choi, and H. Kim, J. Chem. Phys. 122, 044510 (2005).
http://dx.doi.org/10.1063/1.1819317
72.
72.Y. Shim, D. Jeong, M. Y. Choi, and H. J. Kim, J. Chem. Phys. 125, 061102 (2006).
http://dx.doi.org/10.1063/1.2232303
73.
73.Y. Shim and H. J. Kim, J. Chem. Phys. 125, 024507 (2006).
http://dx.doi.org/10.1063/1.2206579
74.
74.Y. Shim, D. Jeong, S. Manjari, M. Y. Choi, and H. J. Kim, Acc. Chem. Res. 40, 1130 (2007).
http://dx.doi.org/10.1021/ar700061r
75.
75.P. Ballone, C. Pinilla, J. Kohanoff, and M. G. Del Popolo, J. Phys. Chem. B 111, 4938 (2007).
http://dx.doi.org/10.1021/jp067484r
76.
76.C. Schröder, M. Haberler, and O. Steinhauser, J. Chem. Phys. 128, 134501 (2008).
http://dx.doi.org/10.1063/1.2868752
77.
77.X. Song, J. Chem. Phys. 131, 044503 (2009).
http://dx.doi.org/10.1063/1.3187147
78.
78.M. N. Kobrak, J. Chem. Phys. 125, 064502 (2006).
http://dx.doi.org/10.1063/1.2227026
79.
79.M. N. Kobrak, J. Chem. Phys. 127, 184507 (2007).
http://dx.doi.org/10.1063/1.2790425
80.
80.M. N. Kobrak, J. Phys. Chem. B 111, 4755 (2007).
http://dx.doi.org/10.1021/jp066112f
81.
81.N. Ito, S. Arzhantsev, and M. Maroncelli, Chem. Phys. Lett. 396, 83 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.08.018
82.
82.A. Samanta, J. Phys. Chem. B 110, 13704 (2006).
http://dx.doi.org/10.1021/jp060441q
83.
83.E. W. Castner, Jr., J. F. Wishart, and H. Shirota, Acc. Chem. Res. 40, 1217 (2007).
http://dx.doi.org/10.1021/ar700169g
84.
84.S. Arzhantsev, H. Jin, G. A. Baker, and M. Maroncelli, J. Phys. Chem. B 111, 4978 (2007).
http://dx.doi.org/10.1021/jp067273m
85.
85.A. M. Funston, T. A. Fadeeva, J. F. Wishart, and E. W. Castner, Jr., J. Phys. Chem. B 111, 4963 (2007).
http://dx.doi.org/10.1021/jp068298o
86.
86.N. Ito and R. Richert, J. Phys. Chem. B 111, 5016 (2007).
http://dx.doi.org/10.1021/jp0640023
87.
87.S. Arzhantsev, H. Jin, N. Ito, and M. Maroncelli, Chem. Phys. Lett. 417, 524 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.10.062
88.
88.L. Sanders Headley, P. Mukherjee, J. L. Anderson, R. Ding, M. Halder, D. W. Armstrong, X. Song, and J. W. Petrich, J. Phys. Chem. A 110, 9549 (2006).
http://dx.doi.org/10.1021/jp0606964
89.
89.Z. H. Hu and C. J. Margulis, Proc. Natl. Acad. Sci. U.S.A. 103, 831 (2006).
http://dx.doi.org/10.1073/pnas.0507364103
90.
90.M. G. Del Pópolo and G. A. Voth, J. Phys. Chem. B 108, 1744 (2004).
http://dx.doi.org/10.1021/jp0364699
91.
91.Z. Hu and C. J. Margulis, Acc. Chem. Res. 40, 1097 (2007).
http://dx.doi.org/10.1021/ar700046m
92.
92.J. Habasaki and K. L. Ngai, J. Chem. Phys. 129, 194501 (2008).
http://dx.doi.org/10.1063/1.3005372
93.
93.K. Iwata, H. Okajima, S. Saha, and H. -o. Hamaguchi, Acc. Chem. Res. 40, 1174 (2007).
http://dx.doi.org/10.1021/ar700074c
94.
94.B. R. Hyun, S. V. Dzyuba, R. A. Bartsch, and E. L. Quitevis, J. Phys. Chem. A 106, 7579 (2002).
http://dx.doi.org/10.1021/jp0141575
95.
95.H. Cang, J. Li, and M. D. Fayer, J. Chem. Phys. 119, 13017 (2003).
http://dx.doi.org/10.1063/1.1628668
96.
96.G. Giraud, C. Gordon, I. Dunkin, and K. Wynne, J. Chem. Phys. 119, 464 (2003).
http://dx.doi.org/10.1063/1.1578056
97.
97.J. R. Rajian, S. F. Li, R. A. Bartsch, and E. L. Quitevis, Chem. Phys. Lett. 393, 372 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.068
98.
98.H. Shirota, A. Funston, J. Wishart, and E. Castner, Jr., J. Chem. Phys. 122, 184512 (2005).
http://dx.doi.org/10.1063/1.1893797
99.
99.J. Li, I. Wang, K. Fruchey, and M. D. Fayer, J. Phys. Chem. A 110, 10384 (2006).
http://dx.doi.org/10.1021/jp0637476
100.
100.D. Xiao, L. G. Hines, Jr., R. A. Bartsch, and E. L. Quitevis, J. Phys. Chem. B 113, 4544 (2009).
http://dx.doi.org/10.1021/jp811293n
101.
101.M. Asaki, A. Redondo, T. Zawodzinski, and A. Taylor, J. Chem. Phys. 116, 10377 (2002).
http://dx.doi.org/10.1063/1.1451054
102.
102.K. Yamamoto, M. Tani, and M. Hangyo, J. Phys. Chem. B 111, 4854 (2007).
http://dx.doi.org/10.1021/jp067171w
103.
103.M. Beard, G. Turner, and C. Schmuttenmaer, J. Phys. Chem. A 106, 878 (2002).
http://dx.doi.org/10.1021/jp013603l
104.
104.D. Underwood and D. Blank, J. Phys. Chem. A 109, 3295 (2005).
http://dx.doi.org/10.1021/jp044187i
105.
105.A. M. Moran, R. A. Nome, and N. F. Scherer, J. Chem. Phys. 125, 031101 (2006).
http://dx.doi.org/10.1063/1.2217940
106.
106.A. M. Moran, R. A. Nome, and N. F. Scherer, J. Chem. Phys. 127, 184505 (2007).
http://dx.doi.org/10.1063/1.2792943
107.
107.R. Atkin, S. Z. El Abedin, R. Hayes, L. H. S. Gasparotto, N. Borisenko, and F. Endres, J. Phys. Chem. C 113, 13266 (2009).
http://dx.doi.org/10.1021/jp9026755
108.
108.R. Hayes, S. Z. El Abedin, and R. Atkin, J. Phys. Chem. B 113, 7049 (2009).
http://dx.doi.org/10.1021/jp902837s
109.
109.S. Z. E. Abedin and F. Endres, Acc. Chem. Res. 40, 1106 (2007).
http://dx.doi.org/10.1021/ar700049w
110.
110.H. Valencia, M. Kohyama, S. Tanaka, and H. Matsumoto, J. Chem. Phys. 131, 244705 (2009).
http://dx.doi.org/10.1063/1.3273087
111.
111.S. Rivera-Rubero and S. Baldelli, J. Phys. Chem. B 108, 15133 (2004).
http://dx.doi.org/10.1021/jp048260g
112.
112.C. S. Santos and S. Baldelli, J. Phys. Chem. B 111, 4715 (2007).
http://dx.doi.org/10.1021/jp067056l
113.
113.A. Ohno, H. Hashimoto, K. Nakajima, M. Suzuki, and K. Kimura, J. Chem. Phys. 130, 204705 (2009).
http://dx.doi.org/10.1063/1.3141385
114.
114.M. Mezger, S. Schramm, H. Schroeder, H. Reichert, M. Deutsch, E. J. De Souza, J. S. Okasinski, B. M. Ocko, V. Honkimaki, and H. Dosch, J. Chem. Phys. 131, 094701 (2009).
http://dx.doi.org/10.1063/1.3212613
115.
115.M. L. Sha, F. C. Zhang, G. Z. Wu, H. P. Fang, C. L. Wang, S. M. Chen, Y. Zhang, and J. Hu, J. Chem. Phys. 128, 134504 (2008).
http://dx.doi.org/10.1063/1.2898497
116.
116.C. Romero and S. Baldelli, J. Phys. Chem. B 110, 6213 (2006).
http://dx.doi.org/10.1021/jp0565150
117.
117.J. B. Rollins, B. D. Fitchett, and J. C. Conboy, J. Phys. Chem. B 111, 4990 (2007).
http://dx.doi.org/10.1021/jp0671906
118.
118.T. Iimori, T. Iwahashi, K. Kanai, K. Seki, J. Sung, D. Kim, H. -o. Hamaguchi, and Y. Ouchi, J. Phys. Chem. B 111, 4860 (2007).
http://dx.doi.org/10.1021/jp067162n
119.
119.T. Y. Yan, S. Li, W. Jiang, X. P. Gao, B. Xiang, and G. A. Voth, J. Phys. Chem. B 110, 1800 (2006).
http://dx.doi.org/10.1021/jp055890p
120.
120.M. González-Melchor, F. Bresme, and J. Alejandre, J. Chem. Phys. 122, 104710 (2005).
http://dx.doi.org/10.1063/1.1861878
121.
121.R. Osada, T. Hoshino, K. Okada, Y. Ohmasa, and M. Yao, J. Chem. Phys. 130, 184705 (2009).
http://dx.doi.org/10.1063/1.3125182
122.
122.E. Sloutskin, R. M. Lynden-Bell, S. Balasubramanian, and M. Deutsch, J. Chem. Phys. 125, 174715 (2006).
http://dx.doi.org/10.1063/1.2361289
123.
123.M. J. Earle, S. P. Katdare, and K. R. Seddon, Org. Lett. 6, 707 (2004).
http://dx.doi.org/10.1021/ol036310e
124.
124.V. I. Pârvulescu and C. Hardacre, Chem. Rev. 107, 2615 (2007).
http://dx.doi.org/10.1021/cr050948h
125.
125.G. M. Arantes and M. C. C. Ribeiro, J. Chem. Phys. 128, 114503 (2008).
http://dx.doi.org/10.1063/1.2890042
126.
126.R. M. Lynden-Bell, J. Chem. Phys. 129, 204503 (2008).
http://dx.doi.org/10.1063/1.3020439
127.
127.M. C. Buzzeo, O. V. Klymenko, J. D. Wadhawan, C. Hardacre, K. R. Seddon, and R. G. Compton, J. Phys. Chem. A 107, 8872 (2003).
http://dx.doi.org/10.1021/jp0304834
128.
128.R. G. Evans, O. V. Klymenko, P. D. Price, S. G. Davies, C. Hardacre, and R. G. Compton, ChemPhysChem 6, 526 (2005).
http://dx.doi.org/10.1002/cphc.200400549
129.
129.A. Paul and A. Samanta, J. Phys. Chem. B 111, 1957 (2007).
http://dx.doi.org/10.1021/jp067481e
130.
130.R. C. Vieira and D. E. Falvey, J. Phys. Chem. B 111, 5023 (2007).
http://dx.doi.org/10.1021/jp0630471
131.
131.A. J. McLean, M. J. Muldoon, C. M. Gordon, and I. R. Dunkin, Chem. Commun. (Cambridge) 2002, 1880.
http://dx.doi.org/10.1039/b202944h
132.
132.A. Skrzypczak and P. Neta, J. Phys. Chem. A 107, 7800 (2003).
http://dx.doi.org/10.1021/jp030416+
133.
133.B. M. Quinn, Z. F. Ding, R. Moulton, and A. J. Bard, Langmuir 18, 1734 (2002).
http://dx.doi.org/10.1021/la011458x
134.
134.J. Wishart and P. Neta, J. Phys. Chem. B 107, 7261 (2003).
http://dx.doi.org/10.1021/jp027792z
135.
135.J. Grodkowski, P. Neta, and J. F. Wishart, J. Phys. Chem. A 107, 9794 (2003).
http://dx.doi.org/10.1021/jp035265p
136.
136.H. Jin, X. Li, and M. Maroncelli, J. Phys. Chem. B 111, 13473 (2007).
http://dx.doi.org/10.1021/jp077226+
137.
137.H. V. R. Annapureddy and C. J. Margulis, J. Phys. Chem. B 113, 12005 (2009).
http://dx.doi.org/10.1021/jp905144n
138.
138.J. L. Anderson, J. Ding, T. Welton, and D. W. Armstrong, J. Am. Chem. Soc. 124, 14247 (2002).
http://dx.doi.org/10.1021/ja028156h
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/12/10.1063/1.3373178
Loading
/content/aip/journal/jcp/132/12/10.1063/1.3373178
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/12/10.1063/1.3373178
2010-03-23
2016-09-28

Abstract

Ionic liquids are an emerging class of materials with a diverse and extraordinary set of properties. Understanding the origins of these properties and how they can be controlled by design to serve valuable practical applications presents a wide array of challenges and opportunities to the chemical physics and physical chemistry community. We highlight here some of the significant progress already made and future research directions in this exciting area.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/12/1.3373178.html;jsessionid=pTgdgwjxvQT9V914N4uRYGdV.x-aip-live-06?itemId=/content/aip/journal/jcp/132/12/10.1063/1.3373178&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/12/10.1063/1.3373178&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/12/10.1063/1.3373178'
Right1,Right2,Right3,