Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/13/10.1063/1.3373389
1.
1.L. S. Hung and C. H. Chen, Mater. Sci. Eng. R. 39, 143 (2002);
http://dx.doi.org/10.1016/S0927-796X(02)00093-1
1.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2.C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. (Weinheim, Ger.) 14, 99 (2002);
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
2.H. E. Katz and Z. Bao, J. Phys. Chem. B 104, 671 (2000).
http://dx.doi.org/10.1021/jp992853n
3.
3.H. Hoppe and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004);
http://dx.doi.org/10.1557/JMR.2004.0252
3.C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
4.
4.C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, Appl. Phys. Lett. 73, 108 (1998).
http://dx.doi.org/10.1063/1.121783
5.
5.Conjugated Polymer and Molecular Interfaces, edited by W. R. Salaneck, K. Seki, A. Kahn, and J. J. Pireaux (Dekker, New York, 2002).
6.
6.H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. (Weinheim, Ger.) 11, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
7.
7.S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2006).
http://dx.doi.org/10.1002/0470068329
8.
8.It should be noted that the usual definition of Schottky limit is that is zero. However, at large , the interface dipole becomes nearly independent on the substrate work function, and this is an important property of the Schottky limit, and therefore, we used this term.
9.
9.S. Narioka, H. Ishii, D. Yoshimura, M. Seki, Y. Ouchi, K. Seki, S. Hasegawa, T. Miyazaki, Y. Harima, and K. Yamashita, Appl. Phys. Lett. 67, 1899 (1995).
http://dx.doi.org/10.1063/1.114370
10.
10.Y. Morikawa, H. Ishii, and K. Seki, Phys. Rev. B 69, 041403 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.041403
11.
11.K. Toyoda, Y. Nakano, I. Hamada, K. Lee, S. Yanagisawa, and Y. Morikawa, Surf. Sci. 603, 2912 (2009).
http://dx.doi.org/10.1016/j.susc.2009.07.039
12.
12.L. Romaner, D. Nabok, P. Puschnig, E. Zojer, and C. Ambrosch-Draxl, New J. Phys. 11, 053010 (2009).
http://dx.doi.org/10.1088/1367-2630/11/5/053010
13.
13.N. Koch, A. Gerlach, S. Duhm, H. Glowatzki, G. Heimel, A. Vollmer, Y. Sakamoto, T. Suzuki, J. Zegenhagen, J. P. Rabe, and F. Schriber, J. Am. Chem. Soc. 130, 7300 (2008).
http://dx.doi.org/10.1021/ja800286k
14.
14.A. Gerlach, S. Sellner, F. Schreiber, N. Koch, and J. Zegenhagen, Phys. Rev. B 75, 045401 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045401
15.
15.H. Vázquez, R. Qszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, and A. Kahn, Europhys. Lett. 65, 802 (2004).
http://dx.doi.org/10.1209/epl/i2003-10131-2
16.
16.H. Vázquez, R. Qszwaldowski, J. Ortega, R. Pérez, and A. Kahn, Appl. Surf. Sci. 234, 107 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.05.084
17.
17.H. Vázquez, W. Gao, F. Flores, and A. Kahn, Phys. Rev. B 71, 041306 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.041306
18.
18.H. Vázquez, F. Flores, and A. Kahn, Org. Electron. 8, 241 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.07.006
19.
19.H. Vázquez, Y. J. Dappe, J. Ortega, and F. Flores, J. Chem. Phys. 126, 144703 (2007).
http://dx.doi.org/10.1063/1.2717165
20.
20.M. G. Betti, A. Kanjilal, C. Mariani, H. Vázquez, Y. J. Dappe, J. Ortega, and F. Flores, Phys. Rev. Lett. 100, 027601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.027601
21.
21.E. Abad, J. Ortega, and F. Flores, J. Vac. Sci. Teschnol. B 27, 2008 (2009).
http://dx.doi.org/10.1116/1.3182739
22.
22.E. Abad, Y. J. Dappe, J. Ortega, and F. Flores, Appl. Phys. A: Mater. Sci. Process. 95, 119 (2009).
http://dx.doi.org/10.1007/s00339-008-5010-4
23.
23.S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, Appl. Phys. Lett. 88, 162109 (2006).
http://dx.doi.org/10.1063/1.2196475
24.
24.A. Ferretti, C. Baldacchini, A. Calzolari, R. D. Felice, A. Ruini, E. Molinari, and M. G. Betti, Phys. Rev. Lett. 99, 046802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.046802
25.
25.H. Yamane, D. Yoshimura, E. Kawabe, R. Sumii, K. Kanai, Y. Ouchi, N. Ueno, and K. Seki, Phys. Rev. B 76, 165436 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165436
26.
26.H. Yamane, E. Kawabe, D. Yoshimura, R. Sumii, K. Kanai, Y. Ouchi, N. Ueno, and K. Seki, Phys. Status Solidi B 245, 793 (2008).
http://dx.doi.org/10.1002/pssb.200743448
27.
27.J. Lagoute, K. Kanisawa, and S. Fölsch, Phys. Rev. B 70, 245415 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.245415
28.
28.S. Lukas, G. Witte, and Ch. Wöll, Phys. Rev. Lett. 88, 028301 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.028301
29.
29.N. Koch, I. Salzmann, R. L. Johnson, J. Pflaum, R. Friedlein, and J. P. Rabe, Org. Electron. 7, 537 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.07.010
30.
30.D. Käfer and G. Witte, Chem. Phys. Lett. 442, 376 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.06.006
31.
31.D. B. Dougherty, W. Jin, W. G. Cullen, J. E. Reutt-Robey, and S. W. Robey, J. Phys. Chem. C 112, 20334 (2008).
http://dx.doi.org/10.1021/jp804682v
32.
32.N. Koch, A. Vollmer, S. Duhm, Y. Sakamoto, and T. Suzuki, Adv. Mater. (Weinheim, Ger.) 19, 112 (2007).
http://dx.doi.org/10.1002/adma.200601825
33.
33.P. G. Schroeder, C. B. France, J. B. Park, and B. A. Parkinson, J. Appl. Phys. 91, 3010 (2002).
http://dx.doi.org/10.1063/1.1445286
34.
34.C. B. France, P. G. Schroeder, J. C. Forsythe, and B. A. Parkinson, Langmuir 19, 1274 (2003).
http://dx.doi.org/10.1021/la026221v
35.
35.C. B. France, P. G. Schroeder, and B. A. Parkinson, Nano Lett. 2, 693 (2002).
http://dx.doi.org/10.1021/nl025567n
36.
36.C. Baldacchini, C. Mariani, and M. G. Betti, J. Chem. Phys. 124, 154702 (2006).
http://dx.doi.org/10.1063/1.2187486
37.
37.N. J. Watkins, L. Yan, and Y. Gao, Appl. Phys. Lett. 80, 4384 (2002).
http://dx.doi.org/10.1063/1.1485129
38.
38.N. Koch, J. Phys.: Condens. Matter 20, 184008 (2008).
http://dx.doi.org/10.1088/0953-8984/20/18/184008
39.
39.M. Simeoni, S. Picozzi, and B. Delley, Surf. Sci. 562, 43 (2004).
http://dx.doi.org/10.1016/j.susc.2004.05.015
40.
40.K. Lee and J. Yu, Surf. Sci. 589, 8 (2005).
http://dx.doi.org/10.1016/j.susc.2005.05.040
41.
41.K. Lee, J. Yu, and Y. Morikawa, Phys. Rev. B 75, 045402 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045402
42.
42.K. Toyoda, Y. Nakano, I. Hamada, K. Lee, S. Yanagisawa, and Y. Morikawa, J. Electron Spectrosc. Relat. Phenom. 174, 78 (2009).
http://dx.doi.org/10.1016/j.elspec.2009.04.005
43.
43.P. Sony, P. Puschnig, D. Nabok, and C. Ambrosch-Draxl, Phys. Rev. Lett. 99, 176401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.176401
44.
44.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
45.
45.F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 95, 186101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.186101
46.
46.F. Ortmann, F. Bechstedt, and W. G. Schmidt, Phys. Rev. B 73, 205101 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205101
47.
47.N. Atodiresei, V. Caciuc, J. -H. Franke, and S. Blügel, Phys. Rev. B 78, 045411 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045411
48.
48.N. Atodiresei, V. Caciuc, P. Lazic, and S. Blügel, Phys. Rev. Lett. 102, 136809 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.136809
49.
49.E. McNellis, J. Meyer, and K. Reuter, Phys. Rev. B 80, 205414 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205414
50.
50.M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
51.
51.D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Käck, V. R. Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis, L. Kong, S. Li, P. G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schröder, and T. Thonhauser, J. Phys.: Condens. Matter 21, 084203 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084203
52.
52.S. Yanagisawa and Y. Morikawa, Jpn. J. Appl. Phys., Part 1 45, 413 (2006).
http://dx.doi.org/10.1143/JJAP.45.413
53.
53.S. Yanagisawa and Y. Morikawa, Chem. Phys. Lett. 420, 523 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.12.096
54.
54.Y. Nakano, S. Yanagisawa, I. Hamada, and Y. Morikawa, Surf. Interface Anal. 40, 1059 (2008).
http://dx.doi.org/10.1002/sia.2813
55.
55.S. Yanagisawa, K. Lee, and Y. Morikawa, J. Chem. Phys. 128, 244704 (2008).
http://dx.doi.org/10.1063/1.2940334
56.
56.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
57.
57.N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
58.
58.D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
59.
59.J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.16067
60.
60.M. Douglas and N. M. Kroll, Ann. Phys. (NY) 82, 89 (1974);
http://dx.doi.org/10.1016/0003-4916(74)90333-9
60.B. A. Hess, Phys. Rev. A 33, 3742 (1986);
http://dx.doi.org/10.1103/PhysRevA.33.3742
60.G. Jansen, and B. A. Hess, Phys. Rev. A 39, 6016 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.6016
61.
61.T. Tsuchiya, M. Abe, T. Nakajima, and K. Hirao, J. Chem. Phys. 115, 4463 (2001).
http://dx.doi.org/10.1063/1.1390515
62.
62.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Revision D.02, Gaussian, Inc., Wallingford CT, 2004.
63.
63.B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7413
64.
64.M. Rohlfing and T. Bredow, Phys. Rev. Lett. 101, 266106 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.266106
65.
65.E. Kawabe, H. Yamane, R. Sumi, K. Koizumi, Y. Ouchi, K. Seki, and K. Kanai, Org. Electron. 9, 783 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.05.017
66.
66.G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).
67.
67.Experimentally, for the pentacene adsorbed Ag(111) surface, the dimensions of the surface unit cell of high density ordered monolayer are reported to be and with an angle of (structure 1 in Ref. 31), and for the Au(111) surface, they are and with an angle of (type B in Ref. 34). They are frequently observed and, therefore, most likely the stable configurations for a monolayer structure. Recent near-edge x-ray absorption fine structure experiment suggested that the molecular plane of the first layer of pentacene on a clean Au(111) surface is tilted along the molecular short axis by about 13° [D. Kafer, L. Ruppel, and G. Witte, Phys. Rev. B 75, 085309 (2007)]
http://dx.doi.org/10.1103/PhysRevB.75.085309
67.On the other hand, on Ag(111), the tilting of the molecular plane has not been reported. This might be the reason for the large difference in the coverage of pentacene monolayer between the two surfaces. The inclined molecular orientation makes higher packing density of the pentacene monolayer possible on Au(111). In our calculations, however, we assumed flat-lying pentacene monolayer on Au(111). We checked that the effect of the tilting of pentacene on the work function change is small provided that the molecular density is the same as the present calculation. If the molecular density becomes as high as the experimentally observed high coverage regime, the intermolecular interaction becomes larger, and therefore, the assumptions of flat-lying geometry and the linear scaling of the work function change for Au(111) become inadequate, and this maybe the reason for the overestimation of the calculated value. Actually, very recent DFT calculations of pentacene/Au(111) with inclined geometry gives better estimation of the work function change [H. Li, Y. Duan, V. Coropceanu, and J. -L. Bredas, Org. Electron. 10, 1571 (2009)]. Although we assumed the flat-lying adsorption geometry, it does not alter the main conclusion of our study, especially, discussions concerning Figs. 4 and 5.
http://dx.doi.org/10.1016/j.orgel.2009.09.003
68.
68.For Cu(111) and Au(111), the equilibrium distance calculated by DFT-D is the same as the deduced distance in our previous paper (Ref. 11). On Cu and Au, the calculated ’s at are evaluated to be −1.09 and −1.06 eV, which are in good agreement with the experimental values of −1.05 and −1.10 eV, respectively. On the other hand, for Ag(111), the equilibrium distance calculated by DFT-D is smaller than the deduced distance in our previous paper (Ref. 11) by 0.04 nm. This discrepancy comes from the inadequate assumption of the surface molecular density of benzene on Ag(111) in our previous paper. In Ref. 11, we employed the surface molecular density of benzene on Au(111), which is higher than that on Ag(111). If the surface molecular density of benzene on Ag(111) [T. J. Rockey, M. Yang, and H. -L. Dai, J. Phys. Chem. B 110, 19973 (2006)] is employed, the calculated at is evaluated to be , being in excellent agreement with the experimental value of −0.7 eV
http://dx.doi.org/10.1021/jp062225n
68.X. L. Zhou, M. E. Castro, and J. M. White, Surf. Sci. 238, 215 (1990).
http://dx.doi.org/10.1016/0039-6028(90)90079-N
69.
69.At becomes slightly below −1.0. We have not yet obtained clear reason for this point, but we think the following fact maybe a possible origin. At , the hybridization between the pentacene and the Cu and Ag surfaces is already strong, whereas the hybridization between the pentacene and the Au surface is significantly weak (the push-back effect is dominant). Therefore, at this distance, the hybridization between the pentacene and metal substrates is not uniform on the three surfaces. At smaller than 0.24 nm, the hybridization becomes strong on the three surfaces, and converges to the unity.
70.
70.The contribution of to the bonding interaction between pentacene and the metal substrate is not large because is much higher than LUMO by . Therefore, we did not include the state.
71.
71.It should be noted that the present GGA underestimates a HOMO-LUMO gap, whereas it does not describe the energy shift due to a polarization of the metal substrate, which reduces the HOMO-LUMO gap [J. B. Neaton M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett. 97, 216405 (2006)]
http://dx.doi.org/10.1103/PhysRevLett.97.216405
71.The two effects tend to cancel the error in the HOMO-LUMO gap [J. M. Garcia-Lastra, C. Rostgaard, A. Rubio, and K. S. Thygesen, Phys. Rev. B 80, 245427 (2009)].
http://dx.doi.org/10.1103/PhysRevB.80.245427
72.
72.On Cu(111), some electrons are transferred from the Cu substrate to the LUMO of pentacene, which should increase the work function. However, the calculated work function is actually decreased. We estimated Gross Population of each orbital and found that about 1.6 electrons are transferred from the Cu surface to the LUMO state, but the HOMO and deeper levels become partially empty, and in total, only 0.4 electrons are transferred from the Cu surface to pentacene molecule. Therefore, majority of the charge transfer takes place intramolecularly, i.e., from the antibonding state of Cu and pentacene HOMO states to bonding state of Cu and pentacene LUMO state and the net charge transfer from the Cu substrate to pentacene is small. Furthermore, filling of the bonding state, which has large weight in the region between Cu and pentacene, and partially emptying of the antibonding state, which has large weight in the vacuum side of pentacene molecule, lead to polarization of pentacene molecule normal to the molecular plane, as pointed out in our previous paper (Ref. 42). This polarization induces the work function decrease even if the LUMO of pentacene becomes partially filled.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/13/10.1063/1.3373389
Loading
/content/aip/journal/jcp/132/13/10.1063/1.3373389
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/13/10.1063/1.3373389
2010-04-02
2016-12-07

Abstract

In order to clarify factors determining the interface dipole, we have studied the electronic structures of pentacene adsorbed on Cu(111), Ag(111), and Au(111) by using first-principles density functionaltheoretical calculations. In the structural optimization, a semiempirical van der Waals (vdW) approach [S. Grimme, J. Comput. Chem.27, 1787 (2006)] is employed to include long-range vdW interactions and is shown to reproduce pentacene-metal distances quite accurately. The pentacene-metal distances for Cu,Ag, and Au are evaluated to be 0.24, 0.29, and 0.32 nm, respectively, and work function changes calculated by using the theoretically optimized adsorption geometries are in good agreement with the experimental values, indicating the validity of the present approach in the prediction of the interface dipole at metal/organic interfaces. We examined systematically how the geometric factors, especially the pentacene-substrate distance , and the electronic properties of the metal substrates contribute to the interface dipole. We found that at , the work function changes (’s) do not depend on the substrate work function, indicating that the interface level alignment is nearly in the Schottky limit, whereas at , ’s vary nearly linearly with , and the interface level alignment is in the Bardeen limit. Our results indicate the importance of both the geometric and the electronic factors in predicting the interface dipoles. The calculated electronic structure shows that on Au, the long-range vdW interaction dominates the pentacene-substrate interaction, whereas on Cu and Ag, the chemical hybridization contributes to the interaction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/13/1.3373389.html;jsessionid=C9th4IcsjSIN4XZoDKkdVYYO.x-aip-live-03?itemId=/content/aip/journal/jcp/132/13/10.1063/1.3373389&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/13/10.1063/1.3373389&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/13/10.1063/1.3373389'
Right1,Right2,Right3,