Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/14/10.1063/1.3376612
1.
1.J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1982).
2.
2.P. Schofield and J. R. Henderson, Proc. R. Soc. London A379, 231 (1982).
3.
3.J. R. Henderson, in Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, New York, 1986).
4.
4.R. C. Tolman, J. Chem. Phys. 17, 333 (1949).
http://dx.doi.org/10.1063/1.1747247
5.
5.A. H. Falls, L. E. Scriven, and H. T. Davis, J. Chem. Phys. 75, 3986 (1981).
http://dx.doi.org/10.1063/1.442557
6.
6.R. Guermeur, F. Biquard, and C. Jacolin, J. Chem. Phys. 82, 2040 (1985).
http://dx.doi.org/10.1063/1.448389
7.
7.E. M. Blokhuis and D. Bedeaux, Physica A 184, 42 (1992).
http://dx.doi.org/10.1016/0378-4371(92)90157-L
8.
8.E. M. Blokhuis and D. Bedeaux, J. Chem. Phys. 97, 3576 (1992).
http://dx.doi.org/10.1063/1.462992
9.
9.D. J. Lee, M. M. Telo da Gama, and K. E. Gubbins, J. Chem. Phys. 85, 490 (1986).
http://dx.doi.org/10.1063/1.451627
10.
10.D. W. Oxtoby and R. Evans, J. Chem. Phys. 89, 7521 (1988).
http://dx.doi.org/10.1063/1.455285
11.
11.K. Koga, X. C. Zeng, and A. K. Shchekin, J. Chem. Phys. 109, 4063 (1998).
http://dx.doi.org/10.1063/1.477006
12.
12.T. V. Bykov and X. C. Zeng, J. Chem. Phys. 117, 1851 (2002).
http://dx.doi.org/10.1063/1.1485733
13.
13.Z. Li and J. Wu, Ind. Eng. Chem. Res. 47, 4988 (2008).
http://dx.doi.org/10.1021/ie070578i
14.
14.A. Malijevský and G. Jackson (unpublished).
15.
15.S. J. Hemingway, J. R. Henderson, and J. S. Rowlinson, Faraday Symp. Chem. Soc. 16, 33 (1981).
http://dx.doi.org/10.1039/fs9811600033
16.
16.S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton, R. A. R. Chantry, and J. S. Rowlinson, J. Chem. Phys. 81, 530 (1984).
http://dx.doi.org/10.1063/1.447358
17.
17.M. J. P. Nijmeijer, C. Bruin, A. B. van Woerkom, A. F. Bakker, and J. M. J. van Leeuwen, J. Chem. Phys. 96, 565 (1992).
http://dx.doi.org/10.1063/1.462495
18.
18.Y. A. Lei, T. Bykov, S. Yoo, and X. C. Zeng, J. Am. Chem. Soc. 127, 15346 (2005).
http://dx.doi.org/10.1021/ja054297i
19.
19.J. Vrabec, G. K. Kedia, G. Fuchs, and H. Hasse, Mol. Phys. 104, 1509 (2006).
http://dx.doi.org/10.1080/00268970600556774
20.
20.P. R. ten Wolde and D. Frenkel, J. Chem. Phys. 109, 9901 (1998).
http://dx.doi.org/10.1063/1.477658
21.
21.H. El Bardouni, M. Mareschal, R. Lovett, and M. Baus, J. Chem. Phys. 113, 9804 (2000).
http://dx.doi.org/10.1063/1.1322031
22.
22.M. Schrader, P. Virnau, and K. Binder, Phys. Rev. E 79, 061104 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.061104
23.
23.A. E. van Giessen and E. M. Blokhuis, J. Chem. Phys. 131, 164705 (2009).
http://dx.doi.org/10.1063/1.3253685
24.
24.G. J. Gloor, G. Jackson, F. J. Blas, and E. de Miguel, J. Chem. Phys. 123, 134703 (2005).
http://dx.doi.org/10.1063/1.2038827
25.
25.B. Widom, J. Chem. Phys. 39, 2808 (1963).
http://dx.doi.org/10.1063/1.1734110
26.
26.R. Eppenga and D. Frenkel, Mol. Phys. 52, 1303 (1984).
http://dx.doi.org/10.1080/00268978400101951
27.
27.E. de Miguel and G. Jackson, J. Chem. Phys. 125, 164109 (2006).
http://dx.doi.org/10.1063/1.2363381
28.
28.J. Lekner and J. R. Henderson, Mol. Phys. 34, 333 (1977).
http://dx.doi.org/10.1080/00268977700101771
29.
29.H. Reiss and D. Reguera, J. Phys. Chem. B 108, 6555 (2004).
http://dx.doi.org/10.1021/jp036929y
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/14/10.1063/1.3376612
Loading
/content/aip/journal/jcp/132/14/10.1063/1.3376612
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/14/10.1063/1.3376612
2010-04-09
2016-12-08

Abstract

Test-area deformations are used to analyze vapor-liquid interfaces of Lennard-Jones particles by molecular dynamics simulation. For planar vapor-liquid interfaces the change in free energy is captured by the average of the corresponding change in energy, the leading-order contribution. This is consistent with the commonly used mechanical (pressure-tensor) route for the surface tension. By contrast for liquiddrops, one finds a large second-order contribution associated with fluctuations in energy. Both the first- and second-order terms make comparable contributions, invalidating the mechanical relation for the surface tension of small drops. The latter is seen to increase above the planar value for drop radii of particle diameters, followed by an apparent weak maximum and slow decay to the planar limit, consistent with a small negative Tolman length.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/14/1.3376612.html;jsessionid=kp8dcc8YABvzIXeZHMkHRqDl.x-aip-live-03?itemId=/content/aip/journal/jcp/132/14/10.1063/1.3376612&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/14/10.1063/1.3376612&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/14/10.1063/1.3376612'
Right1,Right2,Right3,