Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/15/10.1063/1.3363609
1.
1.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 2003).
2.
2.D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, New York, 2002).
3.
3.M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992).
http://dx.doi.org/10.1063/1.463137
4.
4.J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
5.
5.G. Ciccotti, M. Ferrario, and J. P. Ryckaert, Mol. Phys. 47, 1253 (1982).
http://dx.doi.org/10.1080/00268978200100942
6.
6.H. C. Andersen, J. Comput. Phys. 52, 24 (1983).
http://dx.doi.org/10.1016/0021-9991(83)90014-1
7.
7.J. P. Ryckaert and G. Ciccotti, J. Chem. Phys. 78, 7368 (1983).
http://dx.doi.org/10.1063/1.444728
8.
8.R. Edberg, D. J. Evans, and G. P. Morriss, J. Chem. Phys. 84, 6933 (1986).
http://dx.doi.org/10.1063/1.450613
9.
9.S. G. Lambrakos, J. P. Boris, E. S. Oran, I. Chandrasekhar, and M. Nagumo, J. Comput. Phys. 85, 473 (1989).
http://dx.doi.org/10.1016/0021-9991(89)90160-5
10.
10.B. J. Leimkuhler and R. D. Skeel, J. Comput. Phys. 112, 117 (1994).
http://dx.doi.org/10.1006/jcph.1994.1085
11.
11.B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
12.
12.V. Kräutler, W. F. van Gunsteren, and P. H. Hünenberger, J. Comput. Chem. 22, 501 (2001).
http://dx.doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
13.
13.A. G. Bailey, C. P. Lowe, and A. P. Sutton, J. Comput. Phys. 227, 8949 (2008).
http://dx.doi.org/10.1016/j.jcp.2008.07.002
14.
14.S. Toxvaerd, O. J. Heilmann, T. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 131, 064102 (2009).
http://dx.doi.org/10.1063/1.3194785
15.
15.A. G. Bailey and C. P. Lowe, J. Comput. Chem. 30, 2485 (2009).
http://dx.doi.org/10.1002/jcc.21237
16.
16.P. Eastman and V. S. Pande, J. Chem. Theory Comput. 6, 434 (2010).
http://dx.doi.org/10.1021/ct900463w
17.
17.H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
http://dx.doi.org/10.1063/1.439486
18.
18.S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
19.
19.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
20.
20.G. J. Martyna, D. J. Tobias, and M. L. Klein, J. Chem. Phys. 101, 4177 (1994).
http://dx.doi.org/10.1063/1.467468
21.
21.S. Melchionna and G. Ciccotti, J. Chem. Phys. 106, 195 (1997).
http://dx.doi.org/10.1063/1.473041
22.
22.A. Sergi, M. Ferrario, and D. Costa, Mol. Phys. 97, 825 (1999).
http://dx.doi.org/10.1080/00268979909482883
23.
23.G. R. Kneller and T. Mülders, Phys. Rev. E 54, 6825 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.6825
24.
24.T. Mülders, S. Toxvaerd, and G. R. Kneller, Phys. Rev. E 58, 6766 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.6766
25.
25.G. Ciccotti, G. J. Martyna, S. Melchionna, and M. E. Tuckerman, J. Phys. Chem. B 105, 6710 (2001).
http://dx.doi.org/10.1021/jp010601s
26.
26.G. Kalibaeva, M. Ferrario, and G. Ciccotti, Mol. Phys. 101, 765 (2003).
http://dx.doi.org/10.1080/0026897021000044025
27.
27.H. A. Stern, J. Comput. Chem. 25, 749 (2004).
http://dx.doi.org/10.1002/jcc.20001
28.
28.L. J. Lewis and G. Wahnström, Phys. Rev. E 50, 3865 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.3865
29.
29.H. Goldstein, C. Poole, and J. Safko, Classical Mechanics (Addison-Wesley, Reading, MA, 2002).
30.
30.A. Sergi, Phys. Rev. E 69, 021109 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.021109
31.
31.A. Sergi and M. Ferrario, Phys. Rev. E 64, 056125 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.056125
32.
32.K. Cho, J. D. Joannopoulos, and L. Kleinman, Phys. Rev. E 47, 3145 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.3145
33.
33.M. E. Tuckerman, Y. Liu, G. Ciccotti, and G. J. Martyna, J. Chem. Phys. 115, 1678 (2001).
http://dx.doi.org/10.1063/1.1378321
34.
34.V. Marry and G. Ciccotti, J. Comput. Phys. 222, 428 (2007).
http://dx.doi.org/10.1016/j.jcp.2006.07.033
35.
35.J. M. Haile and H. W. Graben, J. Chem. Phys. 73, 2412 (1980).
http://dx.doi.org/10.1063/1.440391
36.
36.H. Ishida and A. Kidera, J. Chem. Phys. 109, 3276 (1998).
http://dx.doi.org/10.1063/1.476919
37.
37.S. Toxvaerd, Mol. Phys. 72, 159 (1991).
http://dx.doi.org/10.1080/00268979100100101
38.
38.S. Jang and G. A. Voth, J. Chem. Phys. 107, 9514 (1997).
http://dx.doi.org/10.1063/1.475247
39.
39.F. Legoll and R. Monneau, J. Chem. Phys. 117, 10452 (2002).
http://dx.doi.org/10.1063/1.1519842
40.
40.T. Yamamoto, J. Chem. Phys. 124, 217101 (2006).
http://dx.doi.org/10.1063/1.2202355
41.
41.S. Toxvaerd, Phys. Rev. E 47, 343 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.343
42.
42.G. S. Ezra, J. Chem. Phys. 125, 034104 (2006).
http://dx.doi.org/10.1063/1.2215608
43.
43.Simulations are performed with length, energy and mass chosen, respectively, in units of , . and . Thus the units of time, temperature and pressure are , , and . The unit for heat capacity becomes .
44.
44.J. R. Ray, H. W. Graben, and J. M. Haile, Nuovo Cimento B 64, 191 (1981).
http://dx.doi.org/10.1007/BF02903282
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/15/10.1063/1.3363609
Loading
/content/aip/journal/jcp/132/15/10.1063/1.3363609
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/15/10.1063/1.3363609
2010-04-19
2016-12-04

Abstract

A modification of the constrained equations of motion of Kalibaeva et al. [Mol. Phys.101, 765 (2003)] in the NPH and NPT ensembles is presented. The modified equations of motion are discretized using central-difference techniques, and the derived integrators are time reversible and conserve the invariant phase space measure. The constraint algorithm builds on the work of Toxvaerd et al. [J. Chem. Phys.131, 064102 (2009)] in the NVE and NVT ensembles: it thus conserves the holonomic bond constraints at the finite machine precision level in the NPH and NPT ensembles. The algorithms were tested on a system of ortho-terphenyl molecules, arriving at the target temperature and pressure in a low and high pressure state. Isobaric heat capacities in the NPH and NPT ensembles were calculated for comparison using the fluctuation formulas as well as the thermodynamic definition. The heat capacities agree within the estimated uncertainties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/15/1.3363609.html;jsessionid=1Ygy3fqUkZwHDZ2s_0KNkl8C.x-aip-live-02?itemId=/content/aip/journal/jcp/132/15/10.1063/1.3363609&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/15/10.1063/1.3363609&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/15/10.1063/1.3363609'
Right1,Right2,Right3,