1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/132/15/10.1063/1.3382344
1.
1.A. J. Stone, The Theory of Intermolecular Forces (Oxford University Press, Oxford, 1997).
2.
2.I. G. Kaplan, Intermolecular Interactions (Wiley, Chichester, 2006).
http://dx.doi.org/10.1002/047086334X
3.
3.S. Grimme, J. Antony, T. Schwabe, and C. Mück-Lichtenfeld, Org. Biomol. Chem. 5, 741 (2007).
http://dx.doi.org/10.1039/b615319b
4.
4.J. Gräfenstein and D. Cremer, J. Chem. Phys. 130, 124105 (2009).
http://dx.doi.org/10.1063/1.3079822
5.
5.E. R. Johnson, I. D. Mackie, and G. A. DiLabio, J. Phys. Org. Chem. 22, 1127 (2009).
http://dx.doi.org/10.1002/poc.1606
6.
6.T. Sato and H. Nakai, J. Chem. Phys. 131, 224104 (2009).
http://dx.doi.org/10.1063/1.3269802
7.
7.M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras, J. Chem. Phys. 114, 5149 (2001).
http://dx.doi.org/10.1063/1.1329889
8.
8.S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
9.
9.P. Jurečka, J. Černý, P. Hobza, and D. R. Salahub, J. Comput. Chem. 28, 555 (2007).
http://dx.doi.org/10.1002/jcc.20570
10.
10.Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.102
11.
11.D. C. Langreth, M. Dion, H. Rydberg, E. Schröder, P. Hyldgaard, and B. I. Lundqvist, Int. J. Quantum Chem. 101, 599 (2005).
http://dx.doi.org/10.1002/qua.20315
12.
12.T. Sato, T. Tsuneda, and K. Hirao, Mol. Phys. 103, 1151 (2005).
http://dx.doi.org/10.1080/00268970412331333474
13.
13.O. A. von Lilienfeld, I. Tavernelli, U. Röthlisberger, and D. Sebastiani, Phys. Rev. Lett. 93, 153004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.153004
14.
14.Y. Y. Sun, Y. -H. Kim, K. Lee, and S. B. Zhang, J. Chem. Phys. 129, 154102 (2008).
http://dx.doi.org/10.1063/1.2992078
15.
15.Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 41, 157 (2008).
http://dx.doi.org/10.1021/ar700111a
16.
16.B. Jeziorski and K. Szalewicz, in Encyclopedia of Computational Chemisty, edited by P. von Rague-Schleyer (Wiley, New York, 1998), Vol. 2, p. 1376.
17.
17.G. Jansen and A. Heßelmann, J. Phys. Chem. A 105, 11156 (2001).
http://dx.doi.org/10.1021/jp0112774
18.
18.M. Pitoňák and A. Heßelmann, J. Chem. Theory Comput. 6, 168 (2010).
http://dx.doi.org/10.1021/ct9005882
19.
19.C. Tuma and J. Sauer, Phys. Chem. Chem. Phys. 8, 3955 (2006).
http://dx.doi.org/10.1039/b608262a
20.
20.K. E. Yousaf and E. N. Brothers, J. Chem. Theory Comput. 6, 864 (2010).
http://dx.doi.org/10.1021/ct900536n
21.
21.F. Shimojo, Z. Wu, A. Nakano, R. K. Kalia, and P. Vashishta, J. Chem. Phys. 132, 094106 (2010).
http://dx.doi.org/10.1063/1.3336452
22.
22.O. A. Vydrov and T. Van Voorhis, Phys. Rev. Lett. 103, 063004 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.063004
23.
23.J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/022201
24.
24.N. Marom, A. Tkatchenko, M. Scheffler, and L. Kronik, J. Chem. Theory Comput. 6, 81 (2010).
http://dx.doi.org/10.1021/ct900410j
25.
25.E. G. Hohenstein, S. T. Chill, and C. D. Sherrill, J. Chem. Theory Comput. 4, 1996 (2008).
http://dx.doi.org/10.1021/ct800308k
26.
26.C. D. Sherrill, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd (Wiley-VCH, New York, 2009), Vol. 26, pp. 138.
http://dx.doi.org/10.1002/9780470399545.ch1
27.
27.G. S. Tschumper, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd (Wiley-VCH, New York, 2009), Vol. 26, pp. 3990.
http://dx.doi.org/10.1002/9780470399545.ch2
28.
28.K. Pernal, R. Podeszwa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 103, 263201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.263201
29.
29.A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
30.
30.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
31.
31.J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8822
32.
32.J. P. Perdew, Phys. Rev. B 34, 7406 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.7406
33.
33.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
34.
34.Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.890
35.
35.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
36.
36.J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
37.
37.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
38.
38.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
39.
39.C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
40.
40.Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 109, 5656 (2005).
http://dx.doi.org/10.1021/jp050536c
41.
41.S. Grimme, J. Chem. Phys. 124, 034108 (2006).
http://dx.doi.org/10.1063/1.2148954
42.
42.S. Grimme, J. Phys. Chem. A 109, 3067 (2005).
http://dx.doi.org/10.1021/jp050036j
43.
43.A. D. Becke and E. R. Johnson, J. Chem. Phys. 122, 154104 (2005).
http://dx.doi.org/10.1063/1.1884601
44.
44.A. D. Becke and E. R. Johnson, J. Chem. Phys. 123, 154101 (2005).
http://dx.doi.org/10.1063/1.2065267
45.
45.A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
46.
46.P. W. Ayers, J. Math. Chem. 46, 86 (2009).
http://dx.doi.org/10.1007/s10910-008-9451-y
47.
47.A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 014104 (2006).
http://dx.doi.org/10.1063/1.2139668
48.
48.E. R. Johnson and A. D. Becke, J. Chem. Phys. 124, 174104 (2006).
http://dx.doi.org/10.1063/1.2190220
49.
49.E. R. Johnson and A. D. Becke, J. Chem. Phys. 123, 024101 (2005).
http://dx.doi.org/10.1063/1.1949201
50.
50.P. Jurečka, J. Šponer, J. Černý, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006).
http://dx.doi.org/10.1039/b600027d
51.
51.J. Kong, Z. Gan, E. Proynov, M. Freindorf, and T. R. Furlani, Phys. Rev. A 79, 042510 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.042510
52.
52.F. A. Gianturco and F. Paesani, J. Chem. Phys. 113, 3011 (2000).
http://dx.doi.org/10.1063/1.1287055
53.
53.X. Wu, M. C. Vargas, S. Nayak, V. Lotrich, and G. Scoles, J. Chem. Phys. 115, 8748 (2001).
http://dx.doi.org/10.1063/1.1412004
54.
54.Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).
http://dx.doi.org/10.1063/1.1424928
55.
55.U. Zimmerli, M. Parrinello, and P. Koumoutsakos, J. Chem. Phys. 120, 2693 (2004).
http://dx.doi.org/10.1063/1.1637034
56.
56.G. Murdachaew, S. de Gironcoli, and G. Scoles, J. Phys. Chem. A 112, 9993 (2008).
http://dx.doi.org/10.1021/jp800974k
57.
57.S. N. Steinmann, G. Csonka, and C. Corminboeuf, J. Chem. Theory Comput. 5, 2950 (2009).
http://dx.doi.org/10.1021/ct9002509
58.
58.T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007).
http://dx.doi.org/10.1039/b704725h
59.
59.Y. Liu and W. A. Goddard III, Mater. Trans. 50, 1664 (2009).
http://dx.doi.org/10.2320/matertrans.MF200911
60.
60.J. -D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
http://dx.doi.org/10.1039/b810189b
61.
61.S. Grimme, Chem.-Eur. J. 10, 3423 (2004).
http://dx.doi.org/10.1002/chem.200400091
62.
62.S. Grimme, Angew. Chem., Int. Ed. 45, 4460 (2006).
http://dx.doi.org/10.1002/anie.200600448
63.
63.H. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
http://dx.doi.org/10.1103/PhysRev.73.360
64.
64.M. Lein, J. F. Dobson, and E. K. U. Gross, J. Comput. Chem. 20, 12 (1999).
http://dx.doi.org/10.1002/(SICI)1096-987X(19990115)20:1<12::AID-JCC4>3.0.CO;2-U
65.
65.C. Kamal, T. K. Ghanty, A. Banerjee, and A. Chakrabarti, J. Chem. Phys. 131, 164708 (2009).
http://dx.doi.org/10.1063/1.3256238
66.
66.G. Starkschall and R. Gordon, J. Chem. Phys. 56, 2801 (1972).
http://dx.doi.org/10.1063/1.1677610
67.
67.A. Thakkar, H. Hettema, and P. Wormer, J. Chem. Phys. 97, 3252 (1992).
http://dx.doi.org/10.1063/1.463012
68.
68.K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984).
http://dx.doi.org/10.1063/1.447150
69.
69.N. A. deLima, J. Chem. Phys. 132, 014110 (2010).
http://dx.doi.org/10.1063/1.3282265
70.
70.A. Kumar and A. J. Thakkar, J. Chem. Phys. 132, 074301 (2010).
http://dx.doi.org/10.1063/1.3315418
71.
71.M. Dierksen and S. Grimme, J. Phys. Chem. A 108, 10225 (2004).
http://dx.doi.org/10.1021/jp047289h
72.
72.B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).
http://dx.doi.org/10.1063/1.1723844
73.
73.J. Muto, Proc. Phys. Math. Soc. Jpn. 17, 629 (1943).
74.
74.A. Tkatchenko and O. A. von Lilienfeld, Phys. Rev. B 78, 045116 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045116
75.
75.M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. A 113, 5806 (2009).
http://dx.doi.org/10.1021/jp8111556
76.
76.P. Pyykkö and M. Atsumi, Chem.-Eur. J. 15, 186 (2009).
http://dx.doi.org/10.1002/chem.200800987
77.
77.See http://www.uni-muenster.de/Chemie.oc/grimme/ for a FORTRAN program implementing the DFT-D3 method and a file with available coefficients.
78.
78.See supplementary material at http://dx.doi.org/10.1063/1.3382344 for optimized DFT-D3 parameter values for triple-zeta calculations, computational details, and details on the benchmark sets.[Supplementary Material]
79.
79.C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757 (2009).
http://dx.doi.org/10.1039/b907148b
80.
80.J. F. Dobson, A. White, and A. Rubio, Phys. Rev. Lett. 96, 073201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.073201
81.
81.R. Ahlrichs, F. Furche, C. Hättig et al., TURBOMOLE, version 6.0, Universität Karlsruhe 2009. See http://www.turbomole.com.
82.
82.F. Neese, ORCA—An Ab Initio, Density Functional and Semiempirical Program Package (University of Bonn, Germany, 2007).
83.
83.H. -J. Werner, P. J. Knowles, R. Lindh et al., MOLPRO, version 2006.1, a package of ab initio programs,” see http://www.molpro.net.
84.
84.F. Weigend, F. Furche, and R. Ahlrichs, J. Chem. Phys. 119, 12753 (2003).
http://dx.doi.org/10.1063/1.1627293
85.
85.F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
86.
86.A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).
http://dx.doi.org/10.1063/1.467146
87.
87.B. Metz, H. Stoll, and M. Dolg, J. Chem. Phys. 113, 2563 (2000).
http://dx.doi.org/10.1063/1.1305880
88.
88.K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, J. Chem. Phys. 119, 11113 (2003).
http://dx.doi.org/10.1063/1.1622924
89.
89.O. Vahtras, J. Almlöf, and M. W. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).
http://dx.doi.org/10.1016/0009-2614(93)89151-7
90.
90.F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).
http://dx.doi.org/10.1039/b204199p
91.
91.F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997).
http://dx.doi.org/10.1007/s002140050269
92.
92.F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, Chem. Phys. Lett. 294, 143 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00862-8
93.
93.K. Eichkorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs, Chem. Phys. Lett. 240, 283 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00621-A
94.
94.A. Hellweg, C. Hättig, S. Höfener, and W. Klopper, Theor. Chem. Acc. 117, 587 (2007).
http://dx.doi.org/10.1007/s00214-007-0250-5
95.
95.F. Furche and D. Rappoport, in Theoretical and Computational Chemistry, edited by M. Olivucci (Elsevier, Amsterdam, 2005), Vol. 16.
96.
96.M. Pitoňak, T. Janowski, P. Neogrády, P. Pulay, and P. Hobza, J. Chem. Theory Comput. 5, 1761 (2009).
http://dx.doi.org/10.1021/ct900126q
97.
97.W. Klopper and H. P. Lüthi, Mol. Phys. 96, 559 (1999).
98.
98.L. Goerigk and S. Grimme, J. Chem. Theory Comput. 6, 107 (2010).
http://dx.doi.org/10.1021/ct900489g
99.
99.S. Tsuzuki, K. Honda, T. Uchimaru, and M. Mikami, J. Chem. Phys. 124, 114304 (2006).
http://dx.doi.org/10.1063/1.2178795
100.
100.E. Goll, H. -J. Werner, and H. Stoll, Phys. Chem. Chem. Phys. 7, 3917 (2005).
http://dx.doi.org/10.1039/b509242f
101.
101.N. Runeberg and P. Pyykkö, Int. J. Quantum Chem. 66, 131 (1998).
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)66:2<131::AID-QUA4>3.0.CO;2-W
102.
102.S. Grimme, C. Mück-Lichtenfeld, and J. Antony, J. Phys. Chem. C 111, 11199 (2007).
http://dx.doi.org/10.1021/jp0720791
103.
103.C. Mück-Lichtenfeld and S. Grimme, Mol. Phys. 105, 2793 (2007).
http://dx.doi.org/10.1080/00268970701635543
104.
104.A. Sygula, F. R. Fronczek, R. Sygula, P. W. Rabideau, and M. M. Olmstead, J. Am. Chem. Soc. 129, 3842 (2007).
http://dx.doi.org/10.1021/ja070616p
105.
105.T. Schwabe and S. Grimme, Acc. Chem. Res. 41, 569 (2008).
http://dx.doi.org/10.1021/ar700208h
106.
106.J. Antony, J. Brüske, and S. Grimme, Phys. Chem. Chem. Phys. 11, 8440 (2009).
http://dx.doi.org/10.1039/b907260h
107.
107.J. -D. Chai and M. Head-Gordon, J. Chem. Phys. 131, 174105 (2009).
http://dx.doi.org/10.1063/1.3244209
108.
108.Y. Zhao and D. G. Truhlar, J. Phys. Chem. C 112, 4061 (2008).
http://dx.doi.org/10.1021/jp710918f
109.
109.M. Korth and S. Grimme, J. Chem. Theory Comput. 5, 993 (2009).
http://dx.doi.org/10.1021/ct800511q
110.
110.J. Antony and S. Grimme, J. Phys. Chem. A 111, 4862 (2007).
http://dx.doi.org/10.1021/jp070589p
111.
111.A. Gulans, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 79, 201105(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.201105
112.
112.D. Řeha, H. Valdés, J. Vondrášek, P. Hobza, A. Abu-Riziq, B. Crews, and M. S. de Vries, Chem.-Eur. J. 11, 6803 (2005).
http://dx.doi.org/10.1002/chem.200500465
113.
113.J. Černý, P. Jurečka, P. Hobza, and H. Valdés, J. Phys. Chem. A 111, 1146 (2007).
http://dx.doi.org/10.1021/jp066504m
114.
114.R. Zacharia, H. Ulbricht, and T. Hertel, Phys. Rev. B 69, 155406 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155406
115.
115.E. Ziambaras, J. Kleis, E. Schröder, and P. Hyldgaard, Phys. Rev. B 76, 155425 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155425
116.
116.A. G. Donchev, Phys. Rev. B 74, 235401 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.235401
117.
117.B. M. Wong, J. Comput. Chem. 30, 51 (2009).
http://dx.doi.org/10.1002/jcc.21022
118.
118.Y. Zhao and D. G. Truhlar, Phys. Chem. Chem. Phys. 10, 2813 (2008).
http://dx.doi.org/10.1039/b717744e
119.
119.E. R. Johnson, P. Mori-Sánchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 129, 204112 (2008).
http://dx.doi.org/10.1063/1.3021474
120.
120.K. Baldrigde (private communication).
121.
121.M. S. Marshall, R. P. Steele, K. S. Thanthiriwatte, and C. D. Sherrill, J. Phys. Chem. A 113, 13628 (2009).
http://dx.doi.org/10.1021/jp906086x
122.
122.D. Feller, D. A. Dixon, and J. B. Nicholas, J. Phys. Chem. A 104, 11414 (2000).
http://dx.doi.org/10.1021/jp002631l
123.
123.A. Ruzsinszky, J. P. Perdew, and G. I. Csonka, J. Phys. Chem. A 109, 11015 (2005).
http://dx.doi.org/10.1021/jp053905d
124.
124.T. J. Rockey, M. Yang, and H. -L. Dai, J. Phys. Chem. B 110, 19973 (2006).
http://dx.doi.org/10.1021/jp062225n
125.
125.S. Grimme, C. Mück-Lichtenfeld, and J. Antony, Phys. Chem. Chem. Phys. 10, 3327 (2008).
http://dx.doi.org/10.1039/b803508c
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/15/10.1063/1.3382344
Loading
/content/aip/journal/jcp/132/15/10.1063/1.3382344
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/15/10.1063/1.3382344
2010-04-16
2014-10-01

Abstract

The method of dispersion correction as an add-on to standard Kohn–Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%–40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/15/1.3382344.html;jsessionid=2be3d052v5oor.x-aip-live-03?itemId=/content/aip/journal/jcp/132/15/10.1063/1.3382344&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/15/10.1063/1.3382344
10.1063/1.3382344
SEARCH_EXPAND_ITEM