Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/15/10.1063/1.3396079
1.
1.S. Hirata, Phys. Chem. Chem. Phys. 11, 8397 (2009).
http://dx.doi.org/10.1039/b905812p
2.
2.R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.291
3.
3.S. Suhai, Phys. Rev. B 27, 3506 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.3506
4.
4.J. Sun and R. J. Bartlett, J. Chem. Phys. 104, 8553 (1996).
http://dx.doi.org/10.1063/1.471545
5.
5.S. Hirata, R. Podeszwa, M. Tobita, and R. J. Bartlett, J. Chem. Phys. 120, 2581 (2004).
http://dx.doi.org/10.1063/1.1637577
6.
6.P. Y. Ayala and G. E. Scuseria, J. Chem. Phys. 115, 9698 (2001).
http://dx.doi.org/10.1063/1.1414369
7.
7.L. Maschio, D. Usvyat, F. R. Manby, S. Casassa, C. Pisani, and M. Schütz, J. Chem. Phys. 76, 075101 (2007).
8.
8.A. F. Izmaylov and G. E. Scuseria, Phys. Chem. Chem. Phys. 10, 3421 (2008).
http://dx.doi.org/10.1039/b803274m
9.
9.M. Marsman, A. Grüneis, J. Painer, and G. Kresse, J. Chem. Phys. 130, 184103 (2009).
http://dx.doi.org/10.1063/1.3126249
10.
10.S. Hirata and T. Shimazaki, Phys. Rev. B 80, 085118 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.085118
11.
11.T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
http://dx.doi.org/10.1002/cpa.3160100201
12.
12.W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985).
http://dx.doi.org/10.1007/BF00527669
13.
13.W. Klopper and W. Kutzelnigg, Chem. Phys. Lett. 134, 17 (1987).
http://dx.doi.org/10.1016/0009-2614(87)80005-2
14.
14.W. Klopper and C. C. M. Samson, J. Chem. Phys. 116, 6397 (2002).
http://dx.doi.org/10.1063/1.1461814
15.
15.F. R. Manby, J. Chem. Phys. 119, 4607 (2003).
http://dx.doi.org/10.1063/1.1594713
16.
16.S. Ten-no and F. R. Manby, J. Chem. Phys. 119, 5358 (2003).
http://dx.doi.org/10.1063/1.1600431
17.
17.S. Ten-no, J. Chem. Phys. 121, 117 (2004).
http://dx.doi.org/10.1063/1.1757439
18.
18.E. F. Valeev, Chem. Phys. Lett. 395, 190 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.061
19.
19.S. Ten-no, Chem. Phys. Lett. 398, 56 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.041
20.
20.E. F. Valeev and C. L. Janssen, J. Chem. Phys. 121, 1214 (2004).
http://dx.doi.org/10.1063/1.1759319
21.
21.D. P. Tew and W. Klopper, J. Chem. Phys. 123, 074101 (2005).
http://dx.doi.org/10.1063/1.1999632
22.
22.S. Ten-no, J. Chem. Phys. 126, 014108 (2007).
http://dx.doi.org/10.1063/1.2403853
23.
23.H. -J. Werner, T. B. Adler, and F. R. Manby, J. Chem. Phys. 126, 164102 (2007).
http://dx.doi.org/10.1063/1.2712434
24.
24.G. Knizia and H. -J. Werner, J. Chem. Phys. 128, 154103 (2008).
http://dx.doi.org/10.1063/1.2889388
25.
25.D. Bokhan, S. Bernadotte, and S. Ten-no, J. Chem. Phys. 131, 084105 (2009).
http://dx.doi.org/10.1063/1.3212884
26.
26.J. J. Wilke and H. F. Schaefer III, J. Chem. Phys. 131, 244116 (2009).
http://dx.doi.org/10.1063/1.3269031
27.
27.J. Noga and W. Kutzelnigg, J. Chem. Phys. 101, 7738 (1994).
http://dx.doi.org/10.1063/1.468266
28.
28.T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, J. Chem. Phys. 129, 071101 (2008).
http://dx.doi.org/10.1063/1.2967181
29.
29.A. Köhn, G. W. Richings, and D. P. Tew, J. Chem. Phys. 129, 201103 (2008).
http://dx.doi.org/10.1063/1.3028546
30.
30.T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, J. Chem. Phys. 130, 054101 (2009).
http://dx.doi.org/10.1063/1.3068302
31.
31.T. Shiozaki, E. F. Valeev, and S. Hirata, in Annual Reports in Computational Chemistry, edited by R. A. Wheeler (Elsevier, Amsterdam, 2009), Vol. 5, pp. 131148.
http://dx.doi.org/10.1016/S1574-1400(09)00506-4
32.
32.T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory (Wiley, Chichester, 2000).
33.
33.R. T. Pack and W. Beyers Brown, J. Chem. Phys. 45, 556 (1966).
http://dx.doi.org/10.1063/1.1727605
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.3396079 for the definition of the special intermediates and for the geometry of polyethylene.[Supplementary Material]
35.
35.S. Kedžuch, M. Milko, and J. Noga, Int. J. Quantum Chem. 105, 929 (2005).
http://dx.doi.org/10.1002/qua.20744
36.
36.J. Noga, S. Kedžuch, J. Šimunek, and S. Ten-no, J. Chem. Phys. 128, 174103 (2008).
http://dx.doi.org/10.1063/1.2907741
37.
37.W. Klopper, J. Chem. Phys. 120, 10890 (2004).
http://dx.doi.org/10.1063/1.1742904
38.
38.T. Shiozaki, Chem. Phys. Lett. 479, 160 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.07.108
39.
39.T. B. Adler, H. -J. Werner, and F. R. Manby, J. Chem. Phys. 130, 054106 (2009).
http://dx.doi.org/10.1063/1.3040174
40.
40.T. Shiozaki, POLYR12, the program for explicitly correlated electron-correlation calculations of molecules and solids.
41.
41.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
42.
42.K. E. Yousaf and K. A. Peterson, J. Chem. Phys. 129, 184108 (2008).
http://dx.doi.org/10.1063/1.3009271
43.
43.C. L. Janssen, I. B. Nielsen, M. L. Leininger, E. F. Valeev, and E. T. Seidl, MPQC, the massively parallel quantum chemistry program, version (2006).
44.
44.K. E. Yousaf and K. A. Peterson, Chem. Phys. Lett. 476, 303 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.06.003
45.
45.H. Stoll, Phys. Rev. B 46, 6700 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6700
46.
46.F. R. Manby, D. Alfè, and M. J. Gillan, Phys. Chem. Chem. Phys. 8, 5178 (2006).
http://dx.doi.org/10.1039/b613676a
47.
47.A. Hermann and P. Schwerdtfeger, Phys. Rev. Lett. 101, 183005 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.183005
48.
48.S. Hirata, J. Chem. Phys. 129, 204104 (2008).
http://dx.doi.org/10.1063/1.3021077
49.
49.T. B. Adler, G. Knizia, and H. -J. Werner, J. Chem. Phys. 127, 221106 (2007).
http://dx.doi.org/10.1063/1.2817618
50.
50.E. F. Valeev, Phys. Chem. Chem. Phys. 10, 106 (2008).
http://dx.doi.org/10.1039/b713938a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/15/10.1063/1.3396079
Loading
/content/aip/journal/jcp/132/15/10.1063/1.3396079
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/15/10.1063/1.3396079
2010-04-15
2016-09-26

Abstract

A formalism for the second-order Møller–Plesset perturbation method employing basis functions that depend explicitly on electron-electron distances (the MP2-R12 or F12 method) is derived and implemented into computer codes for extended systems periodic in one dimension. The excitation amplitudes on these functions are held fixed at values that satisfy the first-order cusp condition. Necessary many-electron integrals over Gaussian-type functions involving Slater-type geminals are evaluated by means of the resolution-of-the-identity approximation with a complementary auxiliary basis set. These integrals and thus the final correlation energy are shown to have the correct size dependence. The valence MP2 correlation energy of polyethylene near the complete basis-set limit is obtained and shown to be considerably greater in magnitude than the value obtained without the R12 treatment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/15/1.3396079.html;jsessionid=r6lTVfMFA-hEiOBhRSUhMzj9.x-aip-live-02?itemId=/content/aip/journal/jcp/132/15/10.1063/1.3396079&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/15/10.1063/1.3396079&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/15/10.1063/1.3396079'
Right1,Right2,Right3,