Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. H. Weare, Rev. Mineral. 17, 143 (1987);
1.M. F. Hochella, S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai, D. L. Sparks, and B. S. Twining, Science 319, 1631 (2008).
2.S. Kerisit, D. J. Cooke, D. Spagnoli, and S. C. Parker, J. Mater. Chem. 15, 1454 (2005);
2.D. Spagnoli, D. J. Cooke, S. Kerisit, and S. C. Parker, J. Mater. Chem. 16, 1997 (2006).
3.S. J. Lippard, Principles of Bioinorganic Chemistry (University Science Books, Mill Valley, CA, 1994);
3.M. Valiev, J. Yang, J. A. Adams, S. S. Taylor, and J. H. Weare, J. Phys. Chem. B 111, 13455 (2007).
4.M. Valiev, R. Kawai, J. A. Adams, and J. H. Weare, J. Am. Chem. Soc. 125, 9926 (2003).
5.D. L. Clark, D. E. Hobart, and M. P. Neu, Chem. Rev. (Washington, D.C.) 95, 25 (1995).
6.R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).
7.D. T. Richens, The Chemistry of Aqua Ions: Synthesis, Structure, and Reactivity: A Tour Through the Periodic Table of the Elements (Wiley, Chichester, 1997).
8.A. D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical Terminology (the “Gold Book”) (Blackwell Science, Oxford, 1997);
8.XML on-line corrected version: (2006) created by M. Nic, J. Jirat, and B. Kosata; updates compiled by A. Jenkins.
9.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989);
9.D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 1996).
10.R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
11.M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992);
11.D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst (Forschungszentrum, Jülich, Germany, 2000), Vol. 1, p. 301;
11.M. Valiev, E. J. Bylaska, A. Gramada, and J. H. Weare, in Reviews in Modern Quantum Chemistry: A Celebration of the Contributions of R. G. Parr, edited by K. D. Sen (World Scientific, Singapore, 2002).
12.J. Saukkoriipi, A. Sillanpää, and K. Laasonen, Phys. Chem. Chem. Phys. 7, 3785 (2005);
12.A. J. Sillanpää, J. T. Päivärinta, M. J. Hotokka, J. B. Rosenholm, and K. E. Laasonen, J. Phys. Chem. A 105, 10111 (2001);
12.T. Ikeda, M. Hirata, and T. Kimura, J. Chem. Phys. 119, 12386 (2003);
12.T. Ikeda, M. Hirata, and T. Kimura, J. Chem. Phys.124, 074503 (2006);
12.D. Spångberg and K. Hermansson, J. Chem. Phys. 120, 4829 (2004);
12.A. Lauenstein, K. Hermansson, J. Lindgren, M. Probst, and P. A. Bopp, Int. J. Quantum Chem. 80, 892 (2000).<892::AID-QUA39>3.0.CO;2-Q
13.E. Wasserman, J. R. Rustad, and S. S. Xantheas, J. Chem. Phys. 106, 9769 (1997).
14.S. A. Bogatko, E. J. Bylaska, and J. H. Weare, J. Phys. Chem. A 114, 2189 (2010).
15.C. F. J. Baes and R. E. Mesmer, Hydrolysis of Cations (Wiley, New York, 1976).
16.J. H. Suh, Acc. Chem. Res. 25, 273 (1992);
16.E. Kimura, Pure Appl. Chem. 65, 355 (1993).
17.E. Kimura, T. Shiota, T. Koike, M. Shiro, and M. Kodama, J. Am. Chem. Soc. 112, 5805 (1990).
18.Z. Zhao, D. M. Rogers, and T. L. Beck, J. Chem. Phys. 132, 014502 (2010).
19.E. Guàrdia, I. Skarmoutsos, and M. Masia, J. Chem. Theory Comput. 5, 1449 (2009);
19.T. W. Whitfield, S. Varma, E. Harder, G. Lamoureux, S. B. Rempe, and B. Roux, J. Chem. Theory Comput. 3, 2068 (2007).
20.J. W. Ponder, C. J. Wu, P. Y. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, J. Phys. Chem. B 114, 2549 (2010).
21.E. J. Bylaska, M. Valiev, J. R. Rustad, and J. H. Weare, J. Chem. Phys. 126, 104505 (2007).
22.M. J. Field, P. A. Bash, and M. Karplus, J. Comput. Chem. 11, 700 (1990);
22.P. D. Lyne, M. Hodoscek, and M. Karplus, J. Phys. Chem. A 103, 3462 (1999);
22.Y. K. Zhang, H. Y. Liu, and W. T. Yang, J. Chem. Phys. 112, 3483 (2000);
22.M. Eichinger, P. Tavan, J. Hutter, and M. Parrinello, J. Chem. Phys. 110, 10452 (1999);
22.C. Kritayakornupong, K. Plankensteiner, and B. M. Rode, J. Comput. Chem. 25, 1576 (2004).
23.A. Laio, J. VandeVondele, and U. Rothlisberger, J. Chem. Phys. 116, 6941 (2002).
24.E. J. Bylaska, W. A. de Jong, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. Aprà, T. L. Windus, S. Hirata, M. T. Hackler, Y. Zhao, P. -D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A. A. Auer, M. Nooijen, E. Brown, G. Cisneros, G. I. Fann, H. Früchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang, NWCHEM, a computational chemistry package for parallel computers, version 5.1.1, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, 2008.
25.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
25.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
26.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
27.D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).
28.D. R. Hamann, Phys. Rev. B 40, 2980 (1989).
29.L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
30.N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
31.S. Nosé, Mol. Phys. 52, 255 (1984);
31.W. G. Hoover, Phys. Rev. A 31, 1695 (1985);
31.P. E. Blöchl and M. Parrinello, Phys. Rev. B 45, 9413 (1992).
32.S. Bogatko, Ph.D. thesis, University of California, 2008.
33.I. D. Brown, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 24 (1976).
34.E. Guàrdia, D. Laria, and J. Martí, J. Phys. Chem. B 110, 6332 (2006).
35.K. Toukan and A. Rahman, Phys. Rev. B 31, 2643 (1985).
36.B. J. Palmer, D. M. Pfund, and J. L. Fulton, J. Phys. Chem. 100, 13393 (1996);
36.L. X. Dang, G. K. Schenter, and J. L. Fulton, J. Phys. Chem. B 107, 14119 (2003).
37.M. I. McCarthy, G. K. Schenter M. R. Chacon-Taylor, J. J. Rehr, and G. E. Brown, Jr., Phys. Rev. B 56, 9925 (1997);
37.L. Campbell, J. J. Rehr, G. K. Schenter, M. I. McCarthy, and D. Dixon, J. Synchrotron Radiat. 6, 310 (1999).
38.J. J. Rehr, R. C. Albers, and S. I. Zabinsky, Phys. Rev. Lett. 69, 3397 (1992);
38.J. J. Rehr, J. M. Deleon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991);
38.S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Phys. Rev. B 52, 2995 (1995);
38.A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, and H. Hung, Phys. Rev. B 65, 104107 (2002).
39.M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Physica B 208, 154 (1995).
40.M. Q. Fatmi, T. S. Hofer, B. R. Randolf, and B. M. Rode, J. Chem. Phys. 123, 054514 (2005).
41.Y. Marcus, Chem. Rev. (Washington, D.C.) 88, 1475 (1988);
41.R. Caminiti, G. Licheri, G. Piccaluga, G. Pinna, and T. Radnai, J. Chem. Phys. 71, 2473 (1979);
41.R. Caminiti and T. Radnai, Z. Naturforsch., A: Phys. Sci. 35, 1368 (1980);
41.W. Bol and T. Welzen, Chem. Phys. Lett. 49, 189 (1977).
42.C. W. Bock, A. K. Katz, and J. P. Glusker, J. Am. Chem. Soc. 117, 3754 (1995);
42.M. Pavlov, P. E. M. Siegbahn, and M. Sandstrom, J. Phys. Chem. A 102, 219 (1998).
43.G. W. Neilson and J. E. Enderby, J. Phys. C 11, L625 (1978);
43.M. C. Read and M. Sandstrom, Acta Chem. Scand., Ser. A 46, 1177 (1992).
44.A. M. Mohammed, H. H. Loeffler, Y. Inada, K. Tanada, and S. Funahashi, J. Mol. Liq. 119, 55 (2005).
45.A. Munoz-Paez, R. R. Pappalardo, and E. S. Marcos, J. Am. Chem. Soc. 117, 11710 (1995).
46.G. Licheri, G. Paschina, G. Piccaluga, and G. Pinna, Z. Naturforsch., A: Phys. Sci. 37, 1205 (1982).
47.A. Musinu, G. Paschina, G. Piccaluga, and M. Magini, J. Appl. Crystallogr. 15, 621 (1982).
48.R. Caminiti, P. Cucca, M. Monduzzi, G. Saba, and G. Crisponi, J. Chem. Phys. 81, 543 (1984).
49.T. Radnai, G. Palinkas, and R. Caminiti, Z. Naturforsch., A: Phys. Sci. 37, 1247 (1982).
50.S. P. Dagnall, D. N. Hague, and A. D. C. Towl, J. Chem. Soc., Faraday Trans. 2 78, 2161 (1982).
51.G. Chillemi, P. D’Angelo, N. V. Pavel, N. Sanna, and V. Barone, J. Am. Chem. Soc. 124, 1968 (2002).
52.S. Obst and H. Bradaczek, J. Mol. Model. 3, 224 (1997).
53.Y. P. Yongyai, S. Kokpol, and B. M. Rode, Chem. Phys. 156, 403 (1991).
54.A. Kuzmin, S. Obst, and J. Purans, J. Phys.: Condens. Matter 9, 10065 (1997).
55.G. W. Marini, N. R. Texler, and B. M. Rode, J. Phys. Chem. 100, 6808 (1996).
56.T. Miyanaga, I. Watanabe, and S. Ikeda, Chem. Lett. 17 (6), 1073 (1988).
57.K. Ozutsumi, T. Yamaguchi, H. Ohtaki, K. Tohji, and Y. Udagawa, Bull. Chem. Soc. Jpn. 58, 2786 (1985).
58.Y. Inada, K. Sugimoto, K. Ozutsumi, and S. Funahashi, Inorg. Chem. 33, 1875 (1994).
59.P. D’Angelo, V. Barone, G. Chillemi, N. Sanna, W. Meyer-Klaucke, and N. V. Pavel, J. Am. Chem. Soc. 124, 1958 (2002).
60.P. Nichols, E. J. Bylaska, G. K. Schenter, and W. de Jong, J. Chem. Phys. 128, 124507 (2008).
61.V. A. Glezakou, Y. S. Chen, J. L. Fulton, G. K. Schenter, and L. X. Dang, Theor. Chem. Acc. 115, 86 (2006);
61.L. X. Dang, G. K. Schenter, V. A. Glezakou, and J. L. Fulton, J. Phys. Chem. B 110, 23644 (2006).
62.A. Grossfield, P. Y. Ren, and J. W. Ponder, Biophys. J. 84, 94a (2003).
63.C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 1479 (2002);
63.P. Y. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003);
63.P. Y. Ren and J. W. Ponder, J. Comput. Chem. 23, 1497 (2002).
64.C. M. Breneman and K. B. Wiberg, J. Comput. Chem. 11, 361 (1990).
65.B. Elsässer, M. Valiev, and J. H. Weare, J. Am. Chem. Soc. 131, 3869 (2009);
65.M. Valiev, E. J. Bylaska, M. Dupuis, and P. G. Tratnyek, J. Phys. Chem. A 112, 2713 (2008).
66.P. E. Blöchl, J. Chem. Phys. 103, 7422 (1995).
67.P. S. Salmon, M. C. Bellissentfunel, and G. J. Herdman, J. Phys.: Condens. Matter 2, 4297 (1990).
68.T. S. Hofer, H. T. Tran, C. F. Schwenk, and B. M. Rode, J. Comput. Chem. 25, 211 (2004).
69.F. P. Rotzinger, Chem. Rev. (Washington, D.C.) 105, 2003 (2005).
70.W. Bol, G. J. A. Gerrits, and C. L. Panthale, J. Appl. Crystallogr. 3, 486 (1970).
71.H. Ohtaki, T. Yamaguchi, and M. Maeda, Bull. Chem. Soc. Jpn. 49, 701 (1976).
72.D. H. Powell, P. M. N. Gullidge, G. W. Neilson, and M. C. Bellissentfunel, Mol. Phys. 71, 1107 (1990).

Data & Media loading...


Article metrics loading...



Results of ab initiomolecular dynamics (AIMD) simulations (density functional ) of the dynamics of waters in the hydration shells surrounding the ion (, ) are compared to simulations using a combined quantum and classical molecular dynamics [AIMD/molecular mechanical (MM)] approach. Both classes of simulations were performed with 64 solvating water molecules and used the same methods in the electronic structure calculation (plane-wave basis set, time steps, effective mass, etc.). In the AIMD/MM calculation, only six waters of hydration were included in the quantum mechanical (QM) region. The remaining 58 waters were treated with a published flexible water-water interaction potential. No reparametrization of the water-water potential was attempted. Additional AIMD/MM simulations were performed with 256 water molecules. The hydration structures predicted from the AIMD and AIMD/MM simulations are found to agree in detail with each other and with the structural results from x-ray data despite the very limited QM region in the AIMD/MM simulation. To further evaluate the agreement of these parameter-free simulations, predicted extended x-rayabsorption fine structure (EXAFS)spectra were compared directly to the recently obtained EXAFS data and they agree in remarkable detail with the experimental observations. The first hydration shell contains six water molecules in a highly symmetric octahedral structure is (maximally located at 2.13–2.15 Å versus 2.072 Å EXAFS experiment). The widths of the peak of the simulated EXAFSspectra agree well with the data ( versus in experiment). Analysis of the H-bond structure of the hydration region shows that the second hydration shell is trigonally bound to the first shell water with a high degree of agreement between the AIMD and AIMD/MM calculations. Beyond the second shell, the bonding pattern returns to the tetrahedral structure of bulk water. The AIMD/MM results emphasize the importance of a quantum description of the first hydration shell to correctly describe the hydration region. In these calculations the full electronic structure of the valence shell of the ion is retained. The simulations show substantial and complex charge relocation on both the ion and the first hydration shell. The dipole moment of the waters in the first hydration shell is 3.4 D (3.3 D AIMD/MM) versus 2.73 D bulk. Little polarization is found for the waters in the second hydration shell (2.8 D). No exchanges were seen between the first and the second hydrations shells; however, many water transfers between the second hydration shell and the bulk were observed. For 64 waters, the AIMD and AIMD/MM simulations give nearly identical results for exchange dynamics. However, in the larger particle simulations (256 waters) there is a significant reduction in the second shell to bulk exchanges.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd