Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/19/10.1063/1.3421542
1.
1.J. H. Weare, Rev. Mineral. 17, 143 (1987);
1.M. F. Hochella, S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai, D. L. Sparks, and B. S. Twining, Science 319, 1631 (2008).
http://dx.doi.org/10.1126/science.1141134
2.
2.S. Kerisit, D. J. Cooke, D. Spagnoli, and S. C. Parker, J. Mater. Chem. 15, 1454 (2005);
http://dx.doi.org/10.1039/b415633c
2.D. Spagnoli, D. J. Cooke, S. Kerisit, and S. C. Parker, J. Mater. Chem. 16, 1997 (2006).
http://dx.doi.org/10.1039/b600808a
3.
3.S. J. Lippard, Principles of Bioinorganic Chemistry (University Science Books, Mill Valley, CA, 1994);
3.M. Valiev, J. Yang, J. A. Adams, S. S. Taylor, and J. H. Weare, J. Phys. Chem. B 111, 13455 (2007).
http://dx.doi.org/10.1021/jp074853q
4.
4.M. Valiev, R. Kawai, J. A. Adams, and J. H. Weare, J. Am. Chem. Soc. 125, 9926 (2003).
http://dx.doi.org/10.1021/ja029618u
5.
5.D. L. Clark, D. E. Hobart, and M. P. Neu, Chem. Rev. (Washington, D.C.) 95, 25 (1995).
http://dx.doi.org/10.1021/cr00033a002
6.
6.R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).
http://dx.doi.org/10.1021/ja00364a005
7.
7.D. T. Richens, The Chemistry of Aqua Ions: Synthesis, Structure, and Reactivity: A Tour Through the Periodic Table of the Elements (Wiley, Chichester, 1997).
8.
8.A. D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical Terminology (the “Gold Book”) (Blackwell Science, Oxford, 1997);
8.XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, and B. Kosata; updates compiled by A. Jenkins.
9.
9.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989);
9.D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 1996).
10.
10.R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2471
11.
11.M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992);
http://dx.doi.org/10.1103/RevModPhys.64.1045
11.D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst (Forschungszentrum, Jülich, Germany, 2000), Vol. 1, p. 301;
11.M. Valiev, E. J. Bylaska, A. Gramada, and J. H. Weare, in Reviews in Modern Quantum Chemistry: A Celebration of the Contributions of R. G. Parr, edited by K. D. Sen (World Scientific, Singapore, 2002).
12.
12.J. Saukkoriipi, A. Sillanpää, and K. Laasonen, Phys. Chem. Chem. Phys. 7, 3785 (2005);
http://dx.doi.org/10.1039/b506949a
12.A. J. Sillanpää, J. T. Päivärinta, M. J. Hotokka, J. B. Rosenholm, and K. E. Laasonen, J. Phys. Chem. A 105, 10111 (2001);
http://dx.doi.org/10.1021/jp012171b
12.T. Ikeda, M. Hirata, and T. Kimura, J. Chem. Phys. 119, 12386 (2003);
http://dx.doi.org/10.1063/1.1627323
12.T. Ikeda, M. Hirata, and T. Kimura, J. Chem. Phys.124, 074503 (2006);
http://dx.doi.org/10.1063/1.2168459
12.D. Spångberg and K. Hermansson, J. Chem. Phys. 120, 4829 (2004);
http://dx.doi.org/10.1063/1.1641191
12.A. Lauenstein, K. Hermansson, J. Lindgren, M. Probst, and P. A. Bopp, Int. J. Quantum Chem. 80, 892 (2000).
http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<892::AID-QUA39>3.0.CO;2-Q
13.
13.E. Wasserman, J. R. Rustad, and S. S. Xantheas, J. Chem. Phys. 106, 9769 (1997).
http://dx.doi.org/10.1063/1.473866
14.
14.S. A. Bogatko, E. J. Bylaska, and J. H. Weare, J. Phys. Chem. A 114, 2189 (2010).
http://dx.doi.org/10.1021/jp904967n
15.
15.C. F. J. Baes and R. E. Mesmer, Hydrolysis of Cations (Wiley, New York, 1976).
16.
16.J. H. Suh, Acc. Chem. Res. 25, 273 (1992);
http://dx.doi.org/10.1021/ar00019a001
16.E. Kimura, Pure Appl. Chem. 65, 355 (1993).
http://dx.doi.org/10.1351/pac199365030355
17.
17.E. Kimura, T. Shiota, T. Koike, M. Shiro, and M. Kodama, J. Am. Chem. Soc. 112, 5805 (1990).
http://dx.doi.org/10.1021/ja00171a020
18.
18.Z. Zhao, D. M. Rogers, and T. L. Beck, J. Chem. Phys. 132, 014502 (2010).
http://dx.doi.org/10.1063/1.3283900
19.
19.E. Guàrdia, I. Skarmoutsos, and M. Masia, J. Chem. Theory Comput. 5, 1449 (2009);
http://dx.doi.org/10.1021/ct900096n
19.T. W. Whitfield, S. Varma, E. Harder, G. Lamoureux, S. B. Rempe, and B. Roux, J. Chem. Theory Comput. 3, 2068 (2007).
http://dx.doi.org/10.1021/ct700172b
20.
20.J. W. Ponder, C. J. Wu, P. Y. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, J. Phys. Chem. B 114, 2549 (2010).
http://dx.doi.org/10.1021/jp910674d
21.
21.E. J. Bylaska, M. Valiev, J. R. Rustad, and J. H. Weare, J. Chem. Phys. 126, 104505 (2007).
http://dx.doi.org/10.1063/1.2566868
22.
22.M. J. Field, P. A. Bash, and M. Karplus, J. Comput. Chem. 11, 700 (1990);
http://dx.doi.org/10.1002/jcc.540110605
22.P. D. Lyne, M. Hodoscek, and M. Karplus, J. Phys. Chem. A 103, 3462 (1999);
http://dx.doi.org/10.1021/jp982115j
22.Y. K. Zhang, H. Y. Liu, and W. T. Yang, J. Chem. Phys. 112, 3483 (2000);
http://dx.doi.org/10.1063/1.480503
22.M. Eichinger, P. Tavan, J. Hutter, and M. Parrinello, J. Chem. Phys. 110, 10452 (1999);
http://dx.doi.org/10.1063/1.479049
22.C. Kritayakornupong, K. Plankensteiner, and B. M. Rode, J. Comput. Chem. 25, 1576 (2004).
http://dx.doi.org/10.1002/jcc.20085
23.
23.A. Laio, J. VandeVondele, and U. Rothlisberger, J. Chem. Phys. 116, 6941 (2002).
http://dx.doi.org/10.1063/1.1462041
24.
24.E. J. Bylaska, W. A. de Jong, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. Aprà, T. L. Windus, S. Hirata, M. T. Hackler, Y. Zhao, P. -D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A. A. Auer, M. Nooijen, E. Brown, G. Cisneros, G. I. Fann, H. Früchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang, NWCHEM, a computational chemistry package for parallel computers, version 5.1.1, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, 2008.
25.
25.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
http://dx.doi.org/10.1103/PhysRev.136.B864
25.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
26.
26.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
27.
27.D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.1494
28.
28.D. R. Hamann, Phys. Rev. B 40, 2980 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.2980
29.
29.L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.1425
30.
30.N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
31.
31.S. Nosé, Mol. Phys. 52, 255 (1984);
http://dx.doi.org/10.1080/00268978400101201
31.W. G. Hoover, Phys. Rev. A 31, 1695 (1985);
http://dx.doi.org/10.1103/PhysRevA.31.1695
31.P. E. Blöchl and M. Parrinello, Phys. Rev. B 45, 9413 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.9413
32.
32.S. Bogatko, Ph.D. thesis, University of California, 2008.
33.
33.I. D. Brown, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 24 (1976).
http://dx.doi.org/10.1107/S0567739476000041
34.
34.E. Guàrdia, D. Laria, and J. Martí, J. Phys. Chem. B 110, 6332 (2006).
http://dx.doi.org/10.1021/jp056981p
35.
35.K. Toukan and A. Rahman, Phys. Rev. B 31, 2643 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.2643
36.
36.B. J. Palmer, D. M. Pfund, and J. L. Fulton, J. Phys. Chem. 100, 13393 (1996);
http://dx.doi.org/10.1021/jp960160q
36.L. X. Dang, G. K. Schenter, and J. L. Fulton, J. Phys. Chem. B 107, 14119 (2003).
http://dx.doi.org/10.1021/jp030968s
37.
37.M. I. McCarthy, G. K. Schenter M. R. Chacon-Taylor, J. J. Rehr, and G. E. Brown, Jr., Phys. Rev. B 56, 9925 (1997);
http://dx.doi.org/10.1103/PhysRevB.56.9925
37.L. Campbell, J. J. Rehr, G. K. Schenter, M. I. McCarthy, and D. Dixon, J. Synchrotron Radiat. 6, 310 (1999).
http://dx.doi.org/10.1107/S0909049598018202
38.
38.J. J. Rehr, R. C. Albers, and S. I. Zabinsky, Phys. Rev. Lett. 69, 3397 (1992);
http://dx.doi.org/10.1103/PhysRevLett.69.3397
38.J. J. Rehr, J. M. Deleon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991);
http://dx.doi.org/10.1021/ja00014a001
38.S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Phys. Rev. B 52, 2995 (1995);
http://dx.doi.org/10.1103/PhysRevB.52.2995
38.A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, and H. Hung, Phys. Rev. B 65, 104107 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.104107
39.
39.M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Physica B 208, 154 (1995).
http://dx.doi.org/10.1016/0921-4526(94)00655-F
40.
40.M. Q. Fatmi, T. S. Hofer, B. R. Randolf, and B. M. Rode, J. Chem. Phys. 123, 054514 (2005).
http://dx.doi.org/10.1063/1.1996575
41.
41.Y. Marcus, Chem. Rev. (Washington, D.C.) 88, 1475 (1988);
http://dx.doi.org/10.1021/cr00090a003
41.R. Caminiti, G. Licheri, G. Piccaluga, G. Pinna, and T. Radnai, J. Chem. Phys. 71, 2473 (1979);
http://dx.doi.org/10.1063/1.438654
41.R. Caminiti and T. Radnai, Z. Naturforsch., A: Phys. Sci. 35, 1368 (1980);
41.W. Bol and T. Welzen, Chem. Phys. Lett. 49, 189 (1977).
http://dx.doi.org/10.1016/0009-2614(77)80472-7
42.
42.C. W. Bock, A. K. Katz, and J. P. Glusker, J. Am. Chem. Soc. 117, 3754 (1995);
http://dx.doi.org/10.1021/ja00118a012
42.M. Pavlov, P. E. M. Siegbahn, and M. Sandstrom, J. Phys. Chem. A 102, 219 (1998).
http://dx.doi.org/10.1021/jp972072r
43.
43.G. W. Neilson and J. E. Enderby, J. Phys. C 11, L625 (1978);
http://dx.doi.org/10.1088/0022-3719/11/15/003
43.M. C. Read and M. Sandstrom, Acta Chem. Scand., Ser. A 46, 1177 (1992).
http://dx.doi.org/10.3891/acta.chem.scand.46-1177
44.
44.A. M. Mohammed, H. H. Loeffler, Y. Inada, K. Tanada, and S. Funahashi, J. Mol. Liq. 119, 55 (2005).
http://dx.doi.org/10.1016/j.molliq.2004.10.008
45.
45.A. Munoz-Paez, R. R. Pappalardo, and E. S. Marcos, J. Am. Chem. Soc. 117, 11710 (1995).
http://dx.doi.org/10.1021/ja00152a012
46.
46.G. Licheri, G. Paschina, G. Piccaluga, and G. Pinna, Z. Naturforsch., A: Phys. Sci. 37, 1205 (1982).
47.
47.A. Musinu, G. Paschina, G. Piccaluga, and M. Magini, J. Appl. Crystallogr. 15, 621 (1982).
http://dx.doi.org/10.1107/S0021889882012795
48.
48.R. Caminiti, P. Cucca, M. Monduzzi, G. Saba, and G. Crisponi, J. Chem. Phys. 81, 543 (1984).
http://dx.doi.org/10.1063/1.447336
49.
49.T. Radnai, G. Palinkas, and R. Caminiti, Z. Naturforsch., A: Phys. Sci. 37, 1247 (1982).
50.
50.S. P. Dagnall, D. N. Hague, and A. D. C. Towl, J. Chem. Soc., Faraday Trans. 2 78, 2161 (1982).
http://dx.doi.org/10.1039/f29827802161
51.
51.G. Chillemi, P. D’Angelo, N. V. Pavel, N. Sanna, and V. Barone, J. Am. Chem. Soc. 124, 1968 (2002).
http://dx.doi.org/10.1021/ja015686p
52.
52.S. Obst and H. Bradaczek, J. Mol. Model. 3, 224 (1997).
http://dx.doi.org/10.1007/s008940050034
53.
53.Y. P. Yongyai, S. Kokpol, and B. M. Rode, Chem. Phys. 156, 403 (1991).
http://dx.doi.org/10.1016/0301-0104(91)89009-Y
54.
54.A. Kuzmin, S. Obst, and J. Purans, J. Phys.: Condens. Matter 9, 10065 (1997).
http://dx.doi.org/10.1088/0953-8984/9/46/004
55.
55.G. W. Marini, N. R. Texler, and B. M. Rode, J. Phys. Chem. 100, 6808 (1996).
http://dx.doi.org/10.1021/jp953375t
56.
56.T. Miyanaga, I. Watanabe, and S. Ikeda, Chem. Lett. 17 (6), 1073 (1988).
http://dx.doi.org/10.1246/cl.1988.1073
57.
57.K. Ozutsumi, T. Yamaguchi, H. Ohtaki, K. Tohji, and Y. Udagawa, Bull. Chem. Soc. Jpn. 58, 2786 (1985).
http://dx.doi.org/10.1246/bcsj.58.2786
58.
58.Y. Inada, K. Sugimoto, K. Ozutsumi, and S. Funahashi, Inorg. Chem. 33, 1875 (1994).
http://dx.doi.org/10.1021/ic00087a024
59.
59.P. D’Angelo, V. Barone, G. Chillemi, N. Sanna, W. Meyer-Klaucke, and N. V. Pavel, J. Am. Chem. Soc. 124, 1958 (2002).
http://dx.doi.org/10.1021/ja015685x
60.
60.P. Nichols, E. J. Bylaska, G. K. Schenter, and W. de Jong, J. Chem. Phys. 128, 124507 (2008).
http://dx.doi.org/10.1063/1.2884861
61.
61.V. A. Glezakou, Y. S. Chen, J. L. Fulton, G. K. Schenter, and L. X. Dang, Theor. Chem. Acc. 115, 86 (2006);
http://dx.doi.org/10.1007/s00214-005-0054-4
61.L. X. Dang, G. K. Schenter, V. A. Glezakou, and J. L. Fulton, J. Phys. Chem. B 110, 23644 (2006).
http://dx.doi.org/10.1021/jp064661f
62.
62.A. Grossfield, P. Y. Ren, and J. W. Ponder, Biophys. J. 84, 94a (2003).
63.
63.C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 1479 (2002);
http://dx.doi.org/10.1063/1.1423940
63.P. Y. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003);
http://dx.doi.org/10.1021/jp027815+
63.P. Y. Ren and J. W. Ponder, J. Comput. Chem. 23, 1497 (2002).
http://dx.doi.org/10.1002/jcc.10127
64.
64.C. M. Breneman and K. B. Wiberg, J. Comput. Chem. 11, 361 (1990).
http://dx.doi.org/10.1002/jcc.540110311
65.
65.B. Elsässer, M. Valiev, and J. H. Weare, J. Am. Chem. Soc. 131, 3869 (2009);
http://dx.doi.org/10.1021/ja807940y
65.M. Valiev, E. J. Bylaska, M. Dupuis, and P. G. Tratnyek, J. Phys. Chem. A 112, 2713 (2008).
http://dx.doi.org/10.1021/jp7104709
66.
66.P. E. Blöchl, J. Chem. Phys. 103, 7422 (1995).
http://dx.doi.org/10.1063/1.470314
67.
67.P. S. Salmon, M. C. Bellissentfunel, and G. J. Herdman, J. Phys.: Condens. Matter 2, 4297 (1990).
http://dx.doi.org/10.1088/0953-8984/2/18/027
68.
68.T. S. Hofer, H. T. Tran, C. F. Schwenk, and B. M. Rode, J. Comput. Chem. 25, 211 (2004).
http://dx.doi.org/10.1002/jcc.10374
69.
69.F. P. Rotzinger, Chem. Rev. (Washington, D.C.) 105, 2003 (2005).
http://dx.doi.org/10.1021/cr030715v
70.
70.W. Bol, G. J. A. Gerrits, and C. L. Panthale, J. Appl. Crystallogr. 3, 486 (1970).
http://dx.doi.org/10.1107/S0021889870006738
71.
71.H. Ohtaki, T. Yamaguchi, and M. Maeda, Bull. Chem. Soc. Jpn. 49, 701 (1976).
http://dx.doi.org/10.1246/bcsj.49.701
72.
72.D. H. Powell, P. M. N. Gullidge, G. W. Neilson, and M. C. Bellissentfunel, Mol. Phys. 71, 1107 (1990).
http://dx.doi.org/10.1080/00268979000102351
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/19/10.1063/1.3421542
Loading
/content/aip/journal/jcp/132/19/10.1063/1.3421542
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/19/10.1063/1.3421542
2010-05-17
2016-10-01

Abstract

Results of ab initiomolecular dynamics (AIMD) simulations (density functional ) of the dynamics of waters in the hydration shells surrounding the ion (, ) are compared to simulations using a combined quantum and classical molecular dynamics [AIMD/molecular mechanical (MM)] approach. Both classes of simulations were performed with 64 solvating water molecules and used the same methods in the electronic structure calculation (plane-wave basis set, time steps, effective mass, etc.). In the AIMD/MM calculation, only six waters of hydration were included in the quantum mechanical (QM) region. The remaining 58 waters were treated with a published flexible water-water interaction potential. No reparametrization of the water-water potential was attempted. Additional AIMD/MM simulations were performed with 256 water molecules. The hydration structures predicted from the AIMD and AIMD/MM simulations are found to agree in detail with each other and with the structural results from x-ray data despite the very limited QM region in the AIMD/MM simulation. To further evaluate the agreement of these parameter-free simulations, predicted extended x-rayabsorption fine structure (EXAFS)spectra were compared directly to the recently obtained EXAFS data and they agree in remarkable detail with the experimental observations. The first hydration shell contains six water molecules in a highly symmetric octahedral structure is (maximally located at 2.13–2.15 Å versus 2.072 Å EXAFS experiment). The widths of the peak of the simulated EXAFSspectra agree well with the data ( versus in experiment). Analysis of the H-bond structure of the hydration region shows that the second hydration shell is trigonally bound to the first shell water with a high degree of agreement between the AIMD and AIMD/MM calculations. Beyond the second shell, the bonding pattern returns to the tetrahedral structure of bulk water. The AIMD/MM results emphasize the importance of a quantum description of the first hydration shell to correctly describe the hydration region. In these calculations the full electronic structure of the valence shell of the ion is retained. The simulations show substantial and complex charge relocation on both the ion and the first hydration shell. The dipole moment of the waters in the first hydration shell is 3.4 D (3.3 D AIMD/MM) versus 2.73 D bulk. Little polarization is found for the waters in the second hydration shell (2.8 D). No exchanges were seen between the first and the second hydrations shells; however, many water transfers between the second hydration shell and the bulk were observed. For 64 waters, the AIMD and AIMD/MM simulations give nearly identical results for exchange dynamics. However, in the larger particle simulations (256 waters) there is a significant reduction in the second shell to bulk exchanges.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/19/1.3421542.html;jsessionid=6IFqva9h1pHX6Lsc17JaS_Oh.x-aip-live-06?itemId=/content/aip/journal/jcp/132/19/10.1063/1.3421542&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/19/10.1063/1.3421542&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/19/10.1063/1.3421542'
Right1,Right2,Right3,