1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communications: Intramolecular basis set superposition error as a measure of basis set incompleteness: Can one reach the basis set limit without extrapolation?
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/132/21/10.1063/1.3430647
1.
1.F. Jensen, Chem. Phys. Lett. 261, 633 (1996).
http://dx.doi.org/10.1016/0009-2614(96)01033-0
2.
2.S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970);
http://dx.doi.org/10.1080/00268977000101561
2.S. Simon, M. Duran, and J. J. Dannenberg, J. Chem. Phys. 105, 11024 (1996).
3.
3.R. M. Balabin, J. Phys. Chem. A 113, 1012 (2009);
http://dx.doi.org/10.1021/jp809639s
3.R. M. Balabin, J. Phys. Chem. A 113, 4910 (2009);
http://dx.doi.org/10.1021/jp9002643
3.R. M. Balabin, J. Phys. Chem. A114, 3698 (2010).
http://dx.doi.org/10.1021/jp911802v
4.
4.F. Jensen, Introduction to Computational Chemistry (Wiley, New York, 1999).
5.
5.S. M. Bachrach, Computational Organic Chemistry (Wiley-Interscience, New York, 2007).
http://dx.doi.org/10.1002/9780470148136
6.
6.T. H. Dunning, J. Phys. Chem. A 104, 9062 (2000).
http://dx.doi.org/10.1021/jp001507z
7.
7.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
8.
8.D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993).
http://dx.doi.org/10.1063/1.464303
9.
9.D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994).
http://dx.doi.org/10.1063/1.466439
10.
10.A. G. Császár, W. D. Allen, and H. F. Schaefer, J. Chem. Phys. 108, 9751 (1998).
http://dx.doi.org/10.1063/1.476449
11.
11.R. M. Balabin, Chem. Phys. Lett. 479, 195 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.08.038
12.
12.A. L. L. East and W. D. Allen, J. Chem. Phys. 99, 4638 (1993).
http://dx.doi.org/10.1063/1.466062
13.
13.R. M. Balabin, J. Phys. Chem. Lett. 1, 20 (2010).
http://dx.doi.org/10.1021/jz900068n
14.
14.T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639 (1997).
http://dx.doi.org/10.1063/1.473863
15.
15.H. B. Jansen and P. Ross, Chem. Phys. Lett. 3, 140 (1969).
http://dx.doi.org/10.1016/0009-2614(69)80118-1
16.
16.S. W. Hunt, K. J. Higgins, M. B. Craddock, C. S. Brauer, and K. R. Leopold, J. Am. Chem. Soc. 125, 13850 (2003).
http://dx.doi.org/10.1021/ja030435x
17.
17.S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
18.
18.R. M. Balabin and E. I. Lomakina, J. Chem. Phys. 131, 074104 (2009).
http://dx.doi.org/10.1063/1.3206326
19.
19.J. Kroon and J. A. Kanters, Nature (London) 248, 667 (1974).
http://dx.doi.org/10.1038/248667a0
20.
20.K. Hensen, T. Stumpf, M. Bolte, C. Näther, and H. Fleischer, J. Am. Chem. Soc. 120, 10402 (1998).
http://dx.doi.org/10.1021/ja981016g
21.
21.F. B. van Duijneveldt, J. G. C. M. van de Rijdt, and J. H. van Lenthe, Chem. Rev. (Washington, D.C.) 94, 1873 (1994).
http://dx.doi.org/10.1021/cr00031a007
22.
22.P. Romaniello and F. Lelj, J. Phys. Chem. A 106, 9114 (2002).
http://dx.doi.org/10.1021/jp0255334
23.
23.R. W. Gora, W. Bartkowiak, S. Roszak, and J. Leszczynski, J. Chem. Phys. 117, 1031 (2002).
http://dx.doi.org/10.1063/1.1482069
24.
24.R. M. Balabin, Chem. Phys. 352, 267 (2008).
http://dx.doi.org/10.1016/j.chemphys.2008.06.015
25.
25.R. M. Balabin, J. Chem. Phys. 129, 164101 (2008).
http://dx.doi.org/10.1063/1.2997349
26.
26.L. F. Holroyd and T. van Mourik, Chem. Phys. Lett. 442, 42 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.05.072
27.
27.D. Moran, A. C. Simmonett, F. E. Leach, W. D. Allen, P. V. Schleyer, and H. F. Schaefer, J. Am. Chem. Soc. 128, 9342 (2006).
http://dx.doi.org/10.1021/ja0630285
28.
28.D. Asturiol, M. Duran, and P. Salvador, J. Chem. Phys. 128, 144108 (2008).
http://dx.doi.org/10.1063/1.2902974
29.
29.D. Feller, J. Chem. Phys. 96, 6104 (1992).
http://dx.doi.org/10.1063/1.462652
30.
30.J. M. L. Martin, Chem. Phys. Lett. 259, 669 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00898-6
31.
31.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Wallingford, CT, 2004.
32.
32.D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed. (CRC, Boca Raton, FL, 2005).
33.
33.P. Salvador, N. Kobko, R. Wieczorek, and J. J. Dannenberg, J. Am. Chem. Soc. 126, 14190 (2004).
http://dx.doi.org/10.1021/ja0492788
34.
34.Y. -F. Chen and J. J. Dannenberg, J. Am. Chem. Soc. 128, 8100 (2006);
http://dx.doi.org/10.1021/ja060494l
34.F. Jensen, J. Chem. Theory Comput. 6, 100 (2010).
http://dx.doi.org/10.1021/ct900436f
35.
35.G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 122, 194104 (2005).
http://dx.doi.org/10.1063/1.1901565
36.
36.A. F. Goncharov and J. C. Crowhurst, Phys. Rev. Lett. 96, 055504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.055504
37.
37.R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, Chemom. Intell. Lab. Syst. 93, 58 (2008);
http://dx.doi.org/10.1016/j.chemolab.2008.04.003
37.R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, Chemom. Intell. Lab. Syst.88, 183 (2007).
http://dx.doi.org/10.1016/j.chemolab.2007.04.006
38.
38.R. M. Balabin, R. Z. Syunyaev, and S. A. Karpov, Fuel 86, 323 (2007).
http://dx.doi.org/10.1016/j.fuel.2006.08.008
39.
39.E. Tarigan, G. Prateepchaikul, R. Yamsaengsung, A. Sirichote, and P. Tekasakul, J. Food. Eng. 75, 447 (2006).
http://dx.doi.org/10.1016/j.jfoodeng.2005.04.030
40.
40.R. Z. Syunyaev, R. M. Balabin, I. S. Akhatov, and J. O. Safieva, Energy Fuels 23, 1230 (2009).
41.
41.R. Z. Syunyaev and R. M. Balabin, J. Dispersion Sci. Technol. 29, 1505 (2008).
http://dx.doi.org/10.1080/01932690802316868
42.
42.R. Z. Syunyaev and R. M. Balabin, J. Dispersion Sci. Technol. 28, 419 (2007).
http://dx.doi.org/10.1080/01932690601107773
43.
43.R. M. Balabin and R. Z. Safieva, J. Near Infrared Spec. 15, 343 (2007).
http://dx.doi.org/10.1255/jnirs.749
44.
44.R. M. Balabin and R. Z. Syunyaev, J. Colloid Interface Sci. 318, 167 (2008).
http://dx.doi.org/10.1016/j.jcis.2007.10.045
45.
45.R. M. Balabin and R. Z. Safieva, Fuel 87, 2745 (2008);
http://dx.doi.org/10.1016/j.fuel.2008.02.014
45.R. M. Balabin and R. Z. Safieva, Fuel87, 1096 (2008).
http://dx.doi.org/10.1016/j.fuel.2007.07.018
46.
46.A. J. Stone, Science 321, 787 (2008).
http://dx.doi.org/10.1126/science.1158006
47.
47.E. A. Carter, Science 321, 800 (2008).
http://dx.doi.org/10.1126/science.1158009
48.
48.R. M. Balabin, J. Chem. Phys. 131, 154307 (2009);
http://dx.doi.org/10.1063/1.3249968
48.R. M. Balabin,Phys. Chem. Chem. Phys. 12, 5980 (2010).
http://dx.doi.org/10.1039/b924029b
49.
49.S. Suzuki, P. G. Green, R. E. Bumgarner, S. Dasgupta, W. A. Goddard, and G. A. Blake, Science 257, 942 (1992).
http://dx.doi.org/10.1126/science.257.5072.942
50.
50.S. D. Ivanov, O. Asvany, A. Witt, E. Hugo, G. Mathias, B. Redlich, D. Marx, and S. Schlemmer, Nature Chem. 2, 298 (2010).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/21/10.1063/1.3430647
Loading
/content/aip/journal/jcp/132/21/10.1063/1.3430647
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/21/10.1063/1.3430647
2010-06-07
2014-07-26

Abstract

One of only two error sources in the solution of the electronic Schrödinger equation is addressed: The basis set convergence (incompleteness) error (BSIE). The results of ab initio (first principles) correlated methods, for which the Møller–Plesset second order perturbation theory (MP2) was chosen as an example, were extrapolated to the complete basis set (CBS) limit using a Dunning-type basis set series. Basis sets as large as cc-pV5Z and cc-pV6Z were used. A representative molecular set that included nitrogen , acetylene , ethylene , carbon dioxide, water , ammonia , hydrogen cyanide (HCN), and ethanol molecules was used for the calculations. The intramolecular basis set superposition error (BSSE) was found to be correlated with BSIE, meaning that intramolecular BSSE can be used as a measure of basis set incompleteness. The BSIE dependence on BSSE could be qualitatively approximated (±25%) by a power-law dependence: , where and . This leads to the fact that CBS values at the MP2 theory level can be obtained using only one energy value and the corresponding intermolecular BSSE. The same power-law dependence was confirmed for all of the molecular systems studied. The universality of the BSIE versus BSSE dependence presented was checked using Pople-type basis sets. Even the results obtained with 6-311G, , and 6-311G(2df,2pd) basis sets were found to be nicely described by the same (universal) power law. Benchmark studies of nitrogen and acetylene contraction (compaction) showed that BSIE can be decreased by up to 83% (at the cc-pVTZ level) using the CBS-BSSE strategy described. The presented BSIE versus BSSE dependence can greatly aid in obtaining CBS results for large molecular systems of chemical or biological interest.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/21/1.3430647.html;jsessionid=4a3spfplmak49.x-aip-live-06?itemId=/content/aip/journal/jcp/132/21/10.1063/1.3430647&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communications: Intramolecular basis set superposition error as a measure of basis set incompleteness: Can one reach the basis set limit without extrapolation?
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/21/10.1063/1.3430647
10.1063/1.3430647
SEARCH_EXPAND_ITEM