Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/21/10.1063/1.3442411
1.
1.R. E. Honig, J. Chem. Phys. 21, 573 (1953);
http://dx.doi.org/10.1063/1.1698971
1.K. A. Gingerich, A. Desideri, and D. L. Cocke, J. Chem. Phys. 62, 731 (1975);
http://dx.doi.org/10.1063/1.430452
1.T. P. Martin and H. Schaber, J. Chem. Phys. 83, 855 (1985);
http://dx.doi.org/10.1063/1.449501
1.K. LaiHing, R. G. Wheeler, W. L. Wilson, and M. A. Duncan, J. Chem. Phys. 87, 3401 (1987);
http://dx.doi.org/10.1063/1.452984
1.X. Ren and K. M. Ervin, Chem. Phys. Lett. 198, 229 (1992);
http://dx.doi.org/10.1016/0009-2614(92)90077-Z
1.Y. Tai, J. Murakami, C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys. 117, 4317 (2002).
http://dx.doi.org/10.1063/1.1496470
2.
2.C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B 64, 233405 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.233405
3.
3.A. A. Shvartsburg and M. F. Jarrold, Phys. Rev. A 60, 1235 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.1235
4.
4.K. -M. Ho, A. A. Shvartsburg, B. Pan, Z. -Y. Lu, C. -Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold, Nature (London) 392, 582 (1998);
http://dx.doi.org/10.1038/33369
4.A. A. Shvartsburg and M. F. Jarrold, Chem. Phys. Lett. 317, 615 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01416-5
5.
5.A. A. Shvartsburg and M. F. Jarrold, Phys. Rev. Lett. 85, 2530 (2000);
http://dx.doi.org/10.1103/PhysRevLett.85.2530
5.G. A. Breaux, C. M. Neal, B. Cao, and M. F. Jarrold, Phys. Rev. B 71, 073410 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.073410
6.
6.K. Joshi, D. G. Kanhere, and S. A. Blundell, Phys. Rev. B 66, 155329 (2002);
http://dx.doi.org/10.1103/PhysRevB.66.155329
6.K. Joshi, D. G. Kanhere, and S. A. Blundell, Phys. Rev. B67, 235413 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.235413
7.
7.G. Ganteför, M. Gausa, K. H. Meiwes-Broer, and H. O. Lutz, Z. Phys. D: At., Mol. Clusters 12, 405 (1989);
http://dx.doi.org/10.1007/BF01426983
7.V. D. Moravec, S. A. Klopcic, and C. C. Jarrold, J. Chem. Phys. 110, 5079 (1999);
http://dx.doi.org/10.1063/1.478405
7.Y. Negishi, H. Kawamata, A. Nakajima, and K. Kaya, J. Electron Spectrosc. Relat. Phenom. 106, 117 (2000).
http://dx.doi.org/10.1016/S0368-2048(99)00070-5
8.
8.L. -F. Cui, L. -M. Wang, and L. -S. Wang, J. Chem. Phys. 126, 064505 (2007).
http://dx.doi.org/10.1063/1.2435347
9.
9.L. F. Cui, X. Huang, L. M. Wang, D. Y. Zubarev, A. I. Boldyrev, J. Li, and L. S. Wang, J. Am. Chem. Soc. 128, 8390 (2006).
http://dx.doi.org/10.1021/ja062052f
10.
10.P. Jackson, I. G. Dance, K. J. Fisher, G. D. Willett, and G. E. Gadd, Int. J. Mass Spectrom. Ion Process. 157–158, 329 (1996);
http://dx.doi.org/10.1016/S0168-1176(96)04456-4
10.C. Zhao and K. Balasubramanian, J. Chem. Phys. 115, 3121 (2001);
http://dx.doi.org/10.1063/1.1386795
10.B. Wang, L. M. Molina, M. J. López, A. Rubio, J. A. Alonso, and M. J. Stott, Ann. Phys. 7, 107 (1998).
11.
11.E. Oger, R. Kelting, P. Weis, A. Lechtken, D. Schooss, N. R. M. Crawford, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. 130, 124305 (2009).
http://dx.doi.org/10.1063/1.3094320
12.
12.A. Lechtken, C. Neiss, J. Stairs, and D. Schooss, J. Chem. Phys. 129, 154304 (2008);
http://dx.doi.org/10.1063/1.2992073
12.S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. 116, 4094 (2002);
http://dx.doi.org/10.1063/1.1445121
12.F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, J. Chem. Phys. 117, 6982 (2002).
http://dx.doi.org/10.1063/1.1507582
13.
13.A. Lechtken, D. Schooss, J. R. Stairs, M. N. Blom, F. Furche, N. Morgner, O. Kostko, B. von Issendorff, and M. M. Kappes, Angew. Chem., Int. Ed. 46, 2944 (2007);
http://dx.doi.org/10.1002/anie.200604760
13.M. N. Blom, D. Schooss, J. Stairs, and M. M. Kappes, J. Chem. Phys. 124, 244308 (2006);
http://dx.doi.org/10.1063/1.2208610
13.M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, and F. Furche, Phys. Rev. A 77, 053202 (2008);
http://dx.doi.org/10.1103/PhysRevA.77.053202
13.A. Lechtken, C. Neiss, M. M. Kappes, and D. Schooss, Phys. Chem. Chem. Phys. 11, 4344 (2009);
http://dx.doi.org/10.1039/b821036e
13.X. Xing, R. M. Danell, I. L. Garzon, K. Michaelian, M. N. Blom, M. M. Burns, and J. H. Parks, Phys. Rev. B 72, 081405 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.081405
14.
14.D. Schooss, M. N. Blom, J. H. Parks, B. von Issendorff, H. Haberland, and M. M. Kappes, Nano Lett. 5, 1972 (2005).
http://dx.doi.org/10.1021/nl0513434
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.3442411 for details of the experimental methods and the DFT calculations, for experimental and theoretical modified molecular scattering functions of , , and , and for atomic coordinates of the structures presented.[Supplementary Material]
16.
16.S. Schäfer, B. Assadollahzadeh, M. Mehring, P. Schwerdtfeger, and R. Schäfer, J. Phys. Chem. A 112, 12312 (2008).
http://dx.doi.org/10.1021/jp8030754
17.
17.A. Hollemann and N. Wiberg, Lehrbuch der Anorganischen Chemie (de Gruyter, Berlin, 1985).
18.
18.R. Ahlrichs and S. D. Elliott, Phys. Chem. Chem. Phys. 1, 13 (1999);
http://dx.doi.org/10.1039/a807713d
18.A. Köhn, F. Weigend, and R. Ahlrichs, Phys. Chem. Chem. Phys. 3, 711 (2001);
http://dx.doi.org/10.1039/b007869g
18.P. Nava, M. Sierka, and R. Ahlrichs, Phys. Chem. Chem. Phys. 5, 3372 (2003).
http://dx.doi.org/10.1039/b303347c
19.
19.T. F. Fässler, Coord. Chem. Rev. 215, 347 (2001).
http://dx.doi.org/10.1016/S0010-8545(01)00321-6
20.
20.G. Prabusankar, A. Kempter, C. Gemel, M. -K. Schröter, and R. A. Fischer, Angew. Chem., Int. Ed. 47, 7234 (2008).
http://dx.doi.org/10.1002/anie.200802470
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/21/10.1063/1.3442411
Loading
/content/aip/journal/jcp/132/21/10.1063/1.3442411
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/21/10.1063/1.3442411
2010-06-07
2016-09-29

Abstract

The gas phase structures of tin cluster anions have been studied by a combination of trapped ion electron diffraction and density functional theory calculations. In the size range of these clusters comprise dimers of stable subunits. In particular and are homodimers of and subunits, respectively. In two units are linked by three additional bridging atoms and is a heterodimer of and subunits. This rather unexpected growth mode is rationalized by the extraordinary stability of the building blocks , , and .

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/21/1.3442411.html;jsessionid=ET86HnYgP_pTdzjwYGJAhH2j.x-aip-live-06?itemId=/content/aip/journal/jcp/132/21/10.1063/1.3442411&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/21/10.1063/1.3442411&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/21/10.1063/1.3442411'
Right1,Right2,Right3,