Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. E. Honig, J. Chem. Phys. 21, 573 (1953);
1.K. A. Gingerich, A. Desideri, and D. L. Cocke, J. Chem. Phys. 62, 731 (1975);
1.T. P. Martin and H. Schaber, J. Chem. Phys. 83, 855 (1985);
1.K. LaiHing, R. G. Wheeler, W. L. Wilson, and M. A. Duncan, J. Chem. Phys. 87, 3401 (1987);
1.X. Ren and K. M. Ervin, Chem. Phys. Lett. 198, 229 (1992);
1.Y. Tai, J. Murakami, C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys. 117, 4317 (2002).
2.C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B 64, 233405 (2001).
3.A. A. Shvartsburg and M. F. Jarrold, Phys. Rev. A 60, 1235 (1999).
4.K. -M. Ho, A. A. Shvartsburg, B. Pan, Z. -Y. Lu, C. -Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold, Nature (London) 392, 582 (1998);
4.A. A. Shvartsburg and M. F. Jarrold, Chem. Phys. Lett. 317, 615 (2000).
5.A. A. Shvartsburg and M. F. Jarrold, Phys. Rev. Lett. 85, 2530 (2000);
5.G. A. Breaux, C. M. Neal, B. Cao, and M. F. Jarrold, Phys. Rev. B 71, 073410 (2005).
6.K. Joshi, D. G. Kanhere, and S. A. Blundell, Phys. Rev. B 66, 155329 (2002);
6.K. Joshi, D. G. Kanhere, and S. A. Blundell, Phys. Rev. B67, 235413 (2003).
7.G. Ganteför, M. Gausa, K. H. Meiwes-Broer, and H. O. Lutz, Z. Phys. D: At., Mol. Clusters 12, 405 (1989);
7.V. D. Moravec, S. A. Klopcic, and C. C. Jarrold, J. Chem. Phys. 110, 5079 (1999);
7.Y. Negishi, H. Kawamata, A. Nakajima, and K. Kaya, J. Electron Spectrosc. Relat. Phenom. 106, 117 (2000).
8.L. -F. Cui, L. -M. Wang, and L. -S. Wang, J. Chem. Phys. 126, 064505 (2007).
9.L. F. Cui, X. Huang, L. M. Wang, D. Y. Zubarev, A. I. Boldyrev, J. Li, and L. S. Wang, J. Am. Chem. Soc. 128, 8390 (2006).
10.P. Jackson, I. G. Dance, K. J. Fisher, G. D. Willett, and G. E. Gadd, Int. J. Mass Spectrom. Ion Process. 157–158, 329 (1996);
10.C. Zhao and K. Balasubramanian, J. Chem. Phys. 115, 3121 (2001);
10.B. Wang, L. M. Molina, M. J. López, A. Rubio, J. A. Alonso, and M. J. Stott, Ann. Phys. 7, 107 (1998).
11.E. Oger, R. Kelting, P. Weis, A. Lechtken, D. Schooss, N. R. M. Crawford, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. 130, 124305 (2009).
12.A. Lechtken, C. Neiss, J. Stairs, and D. Schooss, J. Chem. Phys. 129, 154304 (2008);
12.S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. 116, 4094 (2002);
12.F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, J. Chem. Phys. 117, 6982 (2002).
13.A. Lechtken, D. Schooss, J. R. Stairs, M. N. Blom, F. Furche, N. Morgner, O. Kostko, B. von Issendorff, and M. M. Kappes, Angew. Chem., Int. Ed. 46, 2944 (2007);
13.M. N. Blom, D. Schooss, J. Stairs, and M. M. Kappes, J. Chem. Phys. 124, 244308 (2006);
13.M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, and F. Furche, Phys. Rev. A 77, 053202 (2008);
13.A. Lechtken, C. Neiss, M. M. Kappes, and D. Schooss, Phys. Chem. Chem. Phys. 11, 4344 (2009);
13.X. Xing, R. M. Danell, I. L. Garzon, K. Michaelian, M. N. Blom, M. M. Burns, and J. H. Parks, Phys. Rev. B 72, 081405 (2005).
14.D. Schooss, M. N. Blom, J. H. Parks, B. von Issendorff, H. Haberland, and M. M. Kappes, Nano Lett. 5, 1972 (2005).
15.See supplementary material at for details of the experimental methods and the DFT calculations, for experimental and theoretical modified molecular scattering functions of , , and , and for atomic coordinates of the structures presented.[Supplementary Material]
16.S. Schäfer, B. Assadollahzadeh, M. Mehring, P. Schwerdtfeger, and R. Schäfer, J. Phys. Chem. A 112, 12312 (2008).
17.A. Hollemann and N. Wiberg, Lehrbuch der Anorganischen Chemie (de Gruyter, Berlin, 1985).
18.R. Ahlrichs and S. D. Elliott, Phys. Chem. Chem. Phys. 1, 13 (1999);
18.A. Köhn, F. Weigend, and R. Ahlrichs, Phys. Chem. Chem. Phys. 3, 711 (2001);
18.P. Nava, M. Sierka, and R. Ahlrichs, Phys. Chem. Chem. Phys. 5, 3372 (2003).
19.T. F. Fässler, Coord. Chem. Rev. 215, 347 (2001).
20.G. Prabusankar, A. Kempter, C. Gemel, M. -K. Schröter, and R. A. Fischer, Angew. Chem., Int. Ed. 47, 7234 (2008).

Data & Media loading...


Article metrics loading...



The gas phase structures of tin cluster anions have been studied by a combination of trapped ion electron diffraction and density functional theory calculations. In the size range of these clusters comprise dimers of stable subunits. In particular and are homodimers of and subunits, respectively. In two units are linked by three additional bridging atoms and is a heterodimer of and subunits. This rather unexpected growth mode is rationalized by the extraordinary stability of the building blocks , , and .


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd