1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communications: Exceptions to the -band model of chemisorption on metal surfaces: The dominant role of repulsion between adsorbate states and metal -states
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/132/22/10.1063/1.3437609
1.
1.B. Hammer, Y. Morikawa, and J. K. Nørskov, Phys. Rev. Lett. 76, 2141 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2141
2.
2.F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. R. Munter, P. G. Moses, E. Skulason, T. Bligaard, and J. K. Nørskov, Phys. Rev. Lett. 99, 016105 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.016105
3.
3.J. K. Nørskov, Phys. Rev. B 26, 2875 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.2875
4.
4.B. Hammer and J. K. Nørskov, Surf. Sci. 343, 211 (1995).
http://dx.doi.org/10.1016/0039-6028(96)80007-0
5.
5.J. Greeley, J. K. Nørskov, and M. Mavrikakis, Annu. Rev. Phys. Chem. 53, 319 (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.100301.131630
6.
6.J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, Nature Mater. 5, 909 (2006).
http://dx.doi.org/10.1038/nmat1752
7.
7.V. Stamenkovic, B. S. Mun, K. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, and J. K. Nørskov, Angew. Chem., Int. Ed. 45, 2897 (2006).
http://dx.doi.org/10.1002/anie.200504386
8.
8.J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Nat. Chem. 1, 37 (2009).
http://dx.doi.org/10.1038/nchem.121
9.
9.B. Hammer and J. K. Nørskov, Nature (London) 376, 238 (1995).
http://dx.doi.org/10.1038/376238a0
10.
10.N. Markovic, H. Gasteiger, and P. N. Ross, J. Electrochem. Soc. 144, 1591 (1997).
http://dx.doi.org/10.1149/1.1837646
11.
11.A. Yamakata, T. aki Ishibashi, and H. Onishi, J. Mol. Catal. A: Chem. 199, 85 (2003).
http://dx.doi.org/10.1016/S1381-1169(03)00021-9
12.
12.J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Nørskov, Nat. Chem. 1, 552 (2009).
http://dx.doi.org/10.1038/nchem.367
13.
13.The spin-unpolarized DFT calculations were performed using the ultrasoft pseudopotential plane-wave method with the generalized gradient approximation (GGA-PW91) coded in DACAPO. The wave-functions were expanded in plane-waves with an energy cutoff of 450 eV. The alloy surfaces were modeled by a slab separated by 10 Å of vacuum space. The adsorbates and top two layers were allowed to relax until the total force on the atoms was less than 0.05 eV/Å. In the surface unit cell, Monkhorst–Pack -points were used for the Brillouin-zone integration. Convergence of the results with respect to various calculation parameters was verified in all cases.
14.
14.J. R. Kitchin, J. K. Nørskov, M. A. Barteau, and J. G. Chen, J. Chem. Phys. 120, 10240 (2004).
http://dx.doi.org/10.1063/1.1737365
15.
15.R. A. van Santen and G. J. Kramer, Chem. Rev. (Washington, D.C.) 95, 637 (1995).
http://dx.doi.org/10.1021/cr00035a008
16.
16.J. J. Mortensen, B. Hammer, and J. K. Nørskov, Surf. Sci. 414, 315 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00311-2
17.
17.B. Hammer, Top. Catal. 37, 3 (2006).
http://dx.doi.org/10.1007/s11244-006-0004-y
18.
18.J. R. Schrieffer, J. Vac. Sci. Technol. 9, 561 (1972).
http://dx.doi.org/10.1116/1.1317718
19.
19.W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York, 1989).
20.
20.E. Nikolla, J. Schwank, and S. Linic, J. Am. Chem. Soc. 131, 2747 (2009).
http://dx.doi.org/10.1021/ja809291e
21.
21.N. Schweitzer, H. Xin, E. Nikolla, J. T. Miller, and S. Linic, Top. Catal. 53, 348 (2010).
http://dx.doi.org/10.1007/s11244-010-9448-1
22.
22.H. Xin, N. Schweitzer, E. Nikolla, and S. Linic, J. Chem. Phys. 132, 111101 (2010).
http://dx.doi.org/10.1063/1.3336015
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/22/10.1063/1.3437609
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

DFT-GGA adsorption energies of (a) O and (b) OH on Pd and Pt skin alloys are plotted as a function of the center of -band projected on surface atoms. [(c) and (d)] Surf-O and Surf-OH distance are plotted as a function of DFT-GGA adsorption energies of O and OH on Pd and Pt skin alloys. The model system is shown at the left bottom of the figure. The -band center projected on surface atoms of various skin alloys are shown in the table.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Density of states (DOS) of gas phase OH radical in vacuum. (b) DOS projected on the molecular orbitals of OH adsorbed on atop site of Al(111). (c) and (d) DOS projected on the molecular orbitals of OH adsorbed on atop site of Pd and Pt with subsurface metal.

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of DFT- and model-calculated OH adsorption energy on Pd (a) and Pt (b) skin alloys. The parameters obtained from the model are tabulated in insert.

Image of FIG. 4.

Click to view

FIG. 4.

(a) The covalent attraction and Pauli repulsion contributions to the OH binding energy on Pt skin alloys with subsurface atom calculated using the model discussed in the text. (b) Surf-OH bond distance and the coupling matrix element are plotted as a function of the number of -electrons on the surface substrate atoms. The number of -electrons was calculated as total Bader charge minus the -band filling. (c) F and Cl adsorption energies on Pt and Pd skin alloys as a function of -band center. (d) O and OH adsorption energies on Au and Ag skin alloys as a function of -band center.

Loading

Article metrics loading...

/content/aip/journal/jcp/132/22/10.1063/1.3437609
2010-06-09
2014-04-18

Abstract

We show that there is a family of adsorbate-substrate systems that do not follow the trends in adsorption energies predicted by the -band model. A physically transparent model is used to analyze this phenomenon. We found that these adsorbate-substrate pairs are characterized by the repulsive interaction of the substrate -band with the renormalized adsorbate states. The exceptions to the -band model are mainly associated with the adsorbates having almost completely filled valence shell, and the substrates with nearly fully occupied -band, e.g., OH, F, or Cl adsorption on metals and alloys characterized by or substrate surface atoms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/22/1.3437609.html;jsessionid=a67o5np3idndj.x-aip-live-01?itemId=/content/aip/journal/jcp/132/22/10.1063/1.3437609&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communications: Exceptions to the d-band model of chemisorption on metal surfaces: The dominant role of repulsion between adsorbate states and metal d-states
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/22/10.1063/1.3437609
10.1063/1.3437609
SEARCH_EXPAND_ITEM