1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communications: Observation of two classes of isomers of hydrated electrons in sodium-water clusters
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/132/22/10.1063/1.3439393
1.
1.W. Weyl, Ann. Phys. 121, 601 (1864).
2.
2.C. Kraus, J. Am. Chem. Soc. 30, 1323 (1908).
http://dx.doi.org/10.1021/ja01951a001
3.
3.E. J. Hart and J. W. Boag, J. Am. Chem. Soc. 84, 4090 (1962).
http://dx.doi.org/10.1021/ja00880a025
4.
4.R. N. Barnett, U. Landman, C. L. Cleveland, N. R. Kestner, and J. Jortner, Chem. Phys. Lett. 148, 249 (1988).
http://dx.doi.org/10.1016/0009-2614(88)80309-9
5.
5.J. V. Coe, G. H. Lee, J. G. Eaton, S. T. Arnold, H. W. Sarkas, K. Bowen, C. Ludewigt, H. Haberland, and D. R. Worsnop, J. Chem. Phys. 92, 3980 (1990).
http://dx.doi.org/10.1063/1.457805
6.
6.I. V. Hertel, C. Huglin, C. Nitsch, and C. P. Schulz, Phys. Rev. Lett. 67, 1767 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.1767
7.
7.H. W. Sarkas, S. T. Arnold, J. G. Eaton, G. H. Lee, and K. H. Bowen, J. Chem. Phys. 116, 5731 (2002).
http://dx.doi.org/10.1063/1.1451057
8.
8.J. R. R. Verlet, A. E. Bragg, A. Kammrath, O. Cheshnovsky, and D. M. Neumark, Science 307, 93 (2005).
http://dx.doi.org/10.1126/science.1106719
9.
9.D. M. Neumark, Mol. Phys. 106, 2183 (2008).
http://dx.doi.org/10.1080/00268970802279555
10.
10.F. Misaizu, K. Tsukamoto, M. Sanekata, and K. Fuke, Chem. Phys. Lett. 188, 241 (1992).
http://dx.doi.org/10.1016/0009-2614(92)90016-G
11.
11.C. Steinbach and U. Buck, J. Chem. Phys. 122, 134301 (2005).
http://dx.doi.org/10.1063/1.1863934
12.
12.R. N. Barnett and U. Landman, Phys. Rev. Lett. 70, 1775 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1775
13.
13.K. Hashimoto and K. Morokuma, J. Am. Chem. Soc. 116, 11436 (1994).
http://dx.doi.org/10.1021/ja00104a024
14.
14.T. Tsurusawa and S. Iwata, J. Phys. Chem. A 103, 6134 (1999).
http://dx.doi.org/10.1021/jp990621i
15.
15.I. A. Shkrob, J. Phys. Chem. A 110, 3967 (2006).
http://dx.doi.org/10.1021/jp055500z
16.
16.B. Gao and Z. F. Liu, J. Chem. Phys. 126, 084501 (2007).
http://dx.doi.org/10.1063/1.2464109
17.
17.I. Dauster, M. A. Suhm, U. Buck, and T. Zeuch, Phys. Chem. Chem. Phys. 10, 83 (2008).
http://dx.doi.org/10.1039/b711568g
18.
18.C. Bobbert, S. Schütte, and U. Buck, Eur. Phys. J. D 19, 183 (2002).
http://dx.doi.org/10.1007/s10053-002-8868-2
19.
19.S. Schütte and U. Buck, Int. J. Mass. Spectrom. 220, 183 (2002).
http://dx.doi.org/10.1016/S1387-3806(02)00670-X
20.
20.K. R. Siefermann, Y. Liu, E. Lugovoy, O. Link, M. Faubel, U. Buck, B. Winter, and B. Abel, Nat. Chem. 2, 274 (2010).
http://dx.doi.org/10.1038/nchem.580
21.
21.J. Kim, I. Becker, O. Cheshnovsky, and M. A. Johnson, Chem. Phys. Lett. 297, 90 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)01109-9
22.
22.J. V. Coe, S. M. Williams, and K. H. Bowen, Int. Rev. Phys. Chem. 27, 27 (2008).
http://dx.doi.org/10.1080/01442350701783543
23.
23.L. Ma, K. Majer, F. Chirot, and B. von Issendorff, J. Chem. Phys. 131, 144303 (2009).
http://dx.doi.org/10.1063/1.3245859
24.
24.C. Steinbach, M. Farnik, I. Ettischer, J. Siebers, and U. Buck, Phys. Chem. Chem. Phys. 8, 2752 (2006).
http://dx.doi.org/10.1039/b604715g
25.
25.J. H. Kim, Y. K. Kim, and H. Kang, J. Phys. Chem. C 113, 321 (2009).
http://dx.doi.org/10.1021/jp807774v
26.
26.B. Jagoda-Cwiklik, P. Slavicek, L. Cwiklik, D. Notling, B. Winter, and P. Jungwirth, J. Phys. Chem. A 112, 3499 (2008).
http://dx.doi.org/10.1021/jp711476g
27.
27.S. Barth, M. Oncak, V. Ulrich, M. Mucke, T. Lischke, P. Slavicek, and U. Hergenhahn, J. Phys. Chem. A 113, 13519 (2009).
http://dx.doi.org/10.1021/jp906113e
28.
28.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Revision C.02, Gaussian, Incorporated, Wallingford CT, 2003.
29.
29.R. Ahlrichs et al., TURBOMOLE V6.0 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe, Turbomole GmbH, 2009.
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.3439393 for additional information.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/22/10.1063/1.3439393
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

TOF mass spectra of clusters produced by photoionization of a supersonic expansion at 6.5 bar at 370/440 nm. The laser power density normalized ion yields are scaled by a factor of 15 for 440 nm.

Image of FIG. 2.

Click to view

FIG. 2.

Dependence of integrated ions yields on the photon energy for sodium-water isomers I and II. Ion yields are normalized by laser pulse power density. The steepest signal increase is extrapolated to the energy axis at the two thresholds for ionization. For comparison the ion yield increases of (right panel) and of isomer II corrected for contributions of isomer I are shown (insertion to left panel).

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of VBE evolutions for isomers I (, green) and II (, brown) of clusters (Ref. 9) with IP evolutions for isomer I [quadrangle: red (this work) and ○: red (Ref. 6)] and isomer II [quadrangle: blue (this work)] of . The pentagons mark the binding energies of interior (green) and surface (brown) electrons of the bulk liquid (Ref. 20).

Image of FIG. 4.

Click to view

FIG. 4.

Sodium-water clusters ionization spectra. Geometries were sampled from the molecular dynamics; IPs were calculated at the level of theory (see text).

Tables

Generic image for table

Click to view

Table I.

Mean distance, radius of gyration [see supplementary material (Ref. 30) for details] and IPs for the clusters along with the standard deviations (for calculation details, see text).

Loading

Article metrics loading...

/content/aip/journal/jcp/132/22/10.1063/1.3439393
2010-06-10
2014-04-19

Abstract

A new class of sodium-water clusters with a low lying ionization potential (IP) is characterized by their photoionizationspectra in molecular beam experiments. This implies that clusters coexist for in two forms of significant abundances being distinguished by their IPs of and . A tentative quantum chemical characterization was achieved by simulating ionizationspectra for selected cluster sizes using an ab initio molecular dynamics approach. Experiment and theory suggest that the distance is significantly larger in the clusters with the lower IP. This indicates that the solvated electron in clusters very probably forms with the counterion both a solvent separated and a contact ion pair.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/22/1.3439393.html;jsessionid=2h3s9c4c65ud7.x-aip-live-06?itemId=/content/aip/journal/jcp/132/22/10.1063/1.3439393&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communications: Observation of two classes of isomers of hydrated electrons in sodium-water clusters
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/22/10.1063/1.3439393
10.1063/1.3439393
SEARCH_EXPAND_ITEM