Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/24/10.1063/1.3454657
1.
1.W. M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, J. Chem. Phys. 108, 7763 (1998).
http://dx.doi.org/10.1063/1.476212
2.
2.G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature (London) 446, 782 (2007).
http://dx.doi.org/10.1038/nature05678
3.
3.E. Collini and G. D. Scholes, Science 323, 369 (2009).
http://dx.doi.org/10.1126/science.1164016
4.
4.M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008).
http://dx.doi.org/10.1063/1.3002335
5.
5.B. Palmieri, D. Abramavisius, and S. Mukamel, J. Chem. Phys.130, 204512 (2009).
http://dx.doi.org/10.1063/1.3143485
6.
6.S. Mukamel, S. Tretiak, T. Wagersreiter, and V. Chernyak, Science 277, 781 (1997).
http://dx.doi.org/10.1126/science.277.5327.781
7.
7.W. M. Zhang, T. Meier, V. Chasrnyak, and S. Mukamel, Philos. Trans. R. Soc. London, Ser. A356, 405 (1998).
http://dx.doi.org/10.1098/rsta.1998.0173
8.
8.A. Piryatinski, S. A. Asher, and S. Mukamel, J. Phys. Chem. A 106, 3524 (2002).
http://dx.doi.org/10.1021/jp012849n
9.
9.M. Dahlbom, T. Pullerits, S. Mukamel, and V. Sundstrom, J. Phys. Chem. B 105, 5515 (2001).
http://dx.doi.org/10.1021/jp004496i
10.
10.Y. Zhao, T. Meier, W. Zhang, V. Chernyak, and S. Mukamel, J. Phys. Chem. 103, 3954 (1999).
http://dx.doi.org/10.1021/jp990140z
11.
11.S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.691
12.
12.F. Mintert, A. R. R. Carvalho, M. Kus, and A. Buchleitner, Phys. Rep. 415, 207 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.04.006
13.
13.S. Lloyd, Science 261, 1569 (1993).
http://dx.doi.org/10.1126/science.261.5128.1569
14.
14.V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2275
15.
15.S. Mukamel, R. Oszwaldowski, and L. Yang, J. Chem. Phys. 127, 221105 (2007).
http://dx.doi.org/10.1063/1.2820379
16.
16.D. Abramavisius, B. Palmieri, D. Voronine, F. Sanda, and S. Mukamel, Chem. Rev. 109, 2350 (2009).
http://dx.doi.org/10.1021/cr800268n
17.
17.V. Chernyak and S. Mukamel, J. Opt. Soc. Am. B 13, 1302 (1996).
http://dx.doi.org/10.1364/JOSAB.13.001302
18.
18.M. Combescot, O. Betbeder-Matibet, and F. Dubin, Phys. Rep. 463, 215 (2008).
http://dx.doi.org/10.1016/j.physrep.2007.11.003
19.
19.L. Yang and S. Mukamel, Phys. Rev. B 77, 075335 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075335
20.
20.F. C. Spano and S. Mukamel, Phys. Rev. Lett. 66, 1197 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1197
21.
21.J. A. Leegwater and S. Mukamel, Phys. Rev. A 46, 452 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.452
22.
22.V. Chernyak, N. Wang, and S. Mukamel, Phys. Rep. 263, 213 (1995).
http://dx.doi.org/10.1016/030-1573(95)00015-1
23.
23.S. Mukamel, in Molecular Nonlinear Optics, J. Zyss, Ed. (Elsevier, New York, 1993).
24.
24.W. Zhang, V. Chernyak, and S. Mukamel, J. Chem. Phys. 110, 5011 (1999).
http://dx.doi.org/10.1063/1.478400
25.
25.O. Roslyak and S. Mukamel, Phys. Rev. A 79, 063409 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.063409
26.
26.A. Muthukrishnan, G. S. Agarwal, and M. O. Scully, Phys. Rev. Lett. 93, 093002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.093002
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/24/10.1063/1.3454657
Loading
/content/aip/journal/jcp/132/24/10.1063/1.3454657
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/24/10.1063/1.3454657
2010-06-29
2016-10-01

Abstract

Excitons represent collective optical excitations in which the motions of electrons belonging to different chromophores are correlated. We discuss the utility of the notion of entanglement commonly used in quantum information processing, in the description of these excitations. A distinction is made between some apparent entanglementeffects associated with the linear response that may be removed by a transformation of coordinates and can be handled classically, and genuine entanglement that is fundamentally quantum in nature and shows up only in the nonlinear optical response.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/24/1.3454657.html;jsessionid=SJ_YKUmjY0kvTH7NbVhuwZKk.x-aip-live-06?itemId=/content/aip/journal/jcp/132/24/10.1063/1.3454657&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/24/10.1063/1.3454657&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/24/10.1063/1.3454657'
Right1,Right2,Right3,