Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. R. Shen, Nature (London) 337, 519 (1989).
2.X. Andrade, S. Botti, M. A. L. Marques, and A. Rubio, J. Chem. Phys. 126, 184106 (2007).
3.Y. Takimoto, F. D. Vila, and J. J. Rehr, J. Chem. Phys. 127, 154114 (2007).
4.L. Frediani, H. Ågren, L. Ferrighi, and K. Ruud, J. Chem. Phys. 123, 144117 (2005).
5.J. Salafsky, J. Chem. Phys. 125, 074701 (2006).
6.M. C. Downer, B. S. Mendoza, and V. I. Gavrilenko, Surf. Interface Anal. 31, 966 (2001).
7.D. Bodlaki, E. Freysz, and E. Borguet, J. Chem. Phys. 119, 3958 (2003).
8.P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, Phys. Rev. Lett. 94, 047401 (2005).
9.S. A. Mitchell, R. A. McAloney, D. Moffatt, N. Mora-Diez, and M. Z. Zgierski, J. Chem. Phys. 122, 114707 (2005).
10.H. M. Su, J. T. Ye, Z. K. Tang, and K. S. Wong, Phys. Rev. B 77, 125428 (2008).
11.M. S. Hybertsen and S. G. Louie, Phys. Rev. B 35, 5585 (1987).
12.G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
13.A. Dal Corso, F. Mauri, and A. Rubio, Phys. Rev. B 53, 15638 (1996).
14.J. Chen, L. Jönsson, J. W. Wilkins, and Z. H. Levine, Phys. Rev. B 56, 1787 (1997).
15.Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 66, 41 (1991).
16.E. C. Chang, E. L. Shirley, and Z. H. Levine, Phys. Rev. B 65, 035205 (2001).
17.R. Leitsmann, W. G. Schmidt, P. H. Hahn, and F. Bechstedt, Phys. Rev. B 71, 195209 (2005).
18.E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
19.E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).
20.R. Del Sole and E. Fiorino, Phys. Rev. B 29, 4631 (1984).
21.H. Ehrenreich, The Optical Properties of Solids (Academic, New York, 1965), p. 106.
22.D. Pines and P. Nozieres, The Theory of Quantum Liquids (Addison-Wesley, New York, 1989), Vol. I.
23.S. Bergfeld and W. Daum, Phys. Rev. Lett. 90, 036801 (2003).
24.J. L. P. Hughes and J. E. Sipe, Phys. Rev. B 53, 10751 (1996).
25.B. Adolph and F. Bechstedt, Phys. Rev. B 57, 6519 (1998).
26.The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (;
26.X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsche, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and J. W. Zwanziger, Computer Phys. Commun. 180, 2582 (2009);
26.X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan, Zeit Kristallogr. 220, 558 (2005).
27.E. Luppi, H. Hübener, and V. Véniard, “Ab initio tool for second-order nonlinear optical properties,” Comput. Phys. Chem. (to be submitted).
28.V. Olevano (unpublished),
29.F. Nastos, B. Olejnik, K. Schwarz, and J. E. Sipe, Phys. Rev. B 72, 045223 (2005).
30.J. L. Cabellos, B. S. Mendoza, M. A. Escobar, F. Nastos, and J. E. Sipe, Phys. Rev. B 80, 155205 (2009).
31.S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H. -C. Weissker, A. Rubio, G. Onida, R. D. Sole, and R. W. Godby, Phys. Rev. B 69, 155112 (2004).
32.L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev. Lett. 88, 066404 (2002).
33.B. F. Levine and C. G. Bethea, Appl. Phys. Lett. 20, 272 (1972).
34.D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
35.L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
36.D. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
37.J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
38.A first attempt to calculate the relation between the microscopic and macroscopic second-order responses was made in the framework of Lorentz model in Ref. 37.

Data & Media loading...


Article metrics loading...



We present a first-principles theory for the calculation of the macroscopic second-order susceptibility , based on the time-dependent density-functional theory approach. Our method allows to include straightforwardly the many-body effects, such as crystal local fields and excitons. We apply the theory to the computation of the second-harmonic generation spectroscopy. In order to demonstrate the accuracy of this approach we present spectra for the cubic semiconductorGaAs for which we obtain a very good agreement with the experimental results. We point out that crystal local fields are not sufficient to reproduce the experimental results. Only when we account for the excitonic effects we obtain a very good agreement with the experimental second-harmonic generation spectrum.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd