1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/132/3/10.1063/1.3290958
1.
1.J. Cao and G. A. Voth, J. Chem. Phys. 99, 10070 (1993).
http://dx.doi.org/10.1063/1.465512
2.
2.G. A. Voth, Adv. Chem. Phys. 93, 135 (1996).
http://dx.doi.org/10.1002/9780470141526.ch4
3.
3.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
4.
4.B. J. Braams and D. E. Manolopoulos, J. Chem. Phys. 125, 124105 (2006).
http://dx.doi.org/10.1063/1.2357599
5.
5.J. Lobaugh and G. A. Voth, J. Chem. Phys. 106, 2400 (1997).
http://dx.doi.org/10.1063/1.473151
6.
6.L. Hernández de la Peña and P. G. Kusalik, J. Chem. Phys. 121, 5992 (2004).
http://dx.doi.org/10.1063/1.1783871
7.
7.T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. 123, 154504 (2005).
http://dx.doi.org/10.1063/1.2074967
8.
8.L. Hernández de la Peña and P. G. Kusalik, J. Am. Chem. Soc. 127, 5246 (2005).
http://dx.doi.org/10.1021/ja0424676
9.
9.F. Paesani, W. Zhang, D. A. Case, T. E. Cheatham III, and G. A. Voth, J. Chem. Phys. 125, 184507 (2006).
http://dx.doi.org/10.1063/1.2386157
10.
10.G. S. Fanourgakis, G. K. Schenter, and S. S. Xantheas, J. Chem. Phys. 125, 141102 (2006).
http://dx.doi.org/10.1063/1.2358137
11.
11.F. Paesani, S. S. Xantheas, and G. A. Voth, J. Phys. Chem. B 113, 13118 (2009).
http://dx.doi.org/10.1021/jp907648y
12.
12.F. Paesani and G. A. Voth, J. Phys. Chem. B 113, 5702 (2009).
http://dx.doi.org/10.1021/jp810590c
13.
13.S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, J. Chem. Phys. 129, 074501 (2008).
http://dx.doi.org/10.1063/1.2968555
14.
14.S. Habershon, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009).
http://dx.doi.org/10.1063/1.3167790
15.
15.B. Guillot and Y. Guissani, J. Chem. Phys. 108, 10162 (1998).
http://dx.doi.org/10.1063/1.476475
16.
16.J. A. Poulsen, G. Nyman, and P. J. Rossky, Proc. Natl. Acad. Sci. U.S.A. 102, 6709 (2005).
http://dx.doi.org/10.1073/pnas.0408647102
17.
17.J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Chem. Theory Comput. 2, 1482 (2006).
http://dx.doi.org/10.1021/ct600167s
18.
18.K. Hyeon-Deuk and K. Ando, J. Chem. Phys. 131, 064501 (2009).
http://dx.doi.org/10.1063/1.3200937
19.
19.J. Liu, W. H. Miller, F. Paesani, W. Zhang, and D. A. Case, J. Chem. Phys. 131, 164509 (2009).
http://dx.doi.org/10.1063/1.3254372
20.
20.D. Marx, ChemPhysChem 7, 1848 (2006);
http://dx.doi.org/10.1002/cphc.200600128
20.D. Marx ChemPhysChem8, 209 (2007).
http://dx.doi.org/10.1002/cphc.200790002
21.
21.A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, J. Chem. Phys. 130, 194510 (2009).
http://dx.doi.org/10.1063/1.3125009
22.
22.M. E. Tuckerman, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, NIC Series Vol. 10, edited by J. Grotendorst, D. Marx, and A. Muramatsu (John von Neumann Institute for Computing, Jülich, 2002), pp. 269298.
23.
23.E. Neria, S. Fischer, and M. Karplus, J. Chem. Phys. 105, 1902 (1996).
http://dx.doi.org/10.1063/1.472061
24.
24.A. Pérez, M. E. Tuckerman, and M. H. Müser, J. Chem. Phys. 130, 184105 (2009).
http://dx.doi.org/10.1063/1.3126950
25.
25.R. A. Kuharski and P. J. Rossky, J. Chem. Phys. 82, 5164 (1985).
http://dx.doi.org/10.1063/1.448641
26.
26.H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific, Singapore, 2004).
27.
27.D. Marx and M. H. Müser, J. Phys.: Condens. Matter 11, R117 (1999).
http://dx.doi.org/10.1088/0953-8984/11/11/003
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/3/10.1063/1.3290958
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

IR spectra of TIP3P water, see text. (a) Bulk harmonic HDO from classical MD at (black solid lines), 600 K (blue dashed lines), and 800 K (green dotted lines). [(b)–(e)] bulk HDO, , , and an isolated HDO molecule in the gas phase, respectively, at from classical MD (black solid lines) and CMD (red dashed lines); harmonic and anharmonic models are shown in the lower and upper subpanels, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

Probability distributions correlating the quantum expectation value (upper panel) and the centroid (lower panel) of the OH bond length with the protonic radius of gyration for one harmonic molecule with at 100 K in the gas phase. The probabilities grow from yellow to red to black and the horizontal dashed lines mark the corresponding equilibrium bond length . Insets illustrate very schematically in 2D the qualitative behavior of a covalent OH bond in at high (left) and low (right) temperatures, see text.

Loading

Article metrics loading...

/content/aip/journal/jcp/132/3/10.1063/1.3290958
2010-01-15
2014-04-23

Abstract

Centroid molecular dynamics (CMD) is a popular method to extract approximate quantum dynamics from path integral simulations. Very recently we have shown that CMD gas phase infrared spectra exhibit significant artificial redshifts of stretching peaks, due to the so-called “curvature problem” imprinted by the effective centroid potential. Here we provide evidence that for condensed phases, and in particular for liquid water, CMD produces pronounced artificial redshifts for high-frequency vibrations such as the OH stretching band. This peculiar behavior intrinsic to the CMD method explains part of the unexpectedly large quantum redshifts of the stretching band of liquid water compared to classical frequencies, which is improved after applying a simple and rough “harmonic curvature correction.”

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/3/1.3290958.html;jsessionid=7codngndipdo.x-aip-live-06?itemId=/content/aip/journal/jcp/132/3/10.1063/1.3290958&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/3/10.1063/1.3290958
10.1063/1.3290958
SEARCH_EXPAND_ITEM