1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/132/3/10.1063/1.3290958
1.
1.J. Cao and G. A. Voth, J. Chem. Phys. 99, 10070 (1993).
http://dx.doi.org/10.1063/1.465512
2.
2.G. A. Voth, Adv. Chem. Phys. 93, 135 (1996).
http://dx.doi.org/10.1002/9780470141526.ch4
3.
3.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
4.
4.B. J. Braams and D. E. Manolopoulos, J. Chem. Phys. 125, 124105 (2006).
http://dx.doi.org/10.1063/1.2357599
5.
5.J. Lobaugh and G. A. Voth, J. Chem. Phys. 106, 2400 (1997).
http://dx.doi.org/10.1063/1.473151
6.
6.L. Hernández de la Peña and P. G. Kusalik, J. Chem. Phys. 121, 5992 (2004).
http://dx.doi.org/10.1063/1.1783871
7.
7.T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. 123, 154504 (2005).
http://dx.doi.org/10.1063/1.2074967
8.
8.L. Hernández de la Peña and P. G. Kusalik, J. Am. Chem. Soc. 127, 5246 (2005).
http://dx.doi.org/10.1021/ja0424676
9.
9.F. Paesani, W. Zhang, D. A. Case, T. E. Cheatham III, and G. A. Voth, J. Chem. Phys. 125, 184507 (2006).
http://dx.doi.org/10.1063/1.2386157
10.
10.G. S. Fanourgakis, G. K. Schenter, and S. S. Xantheas, J. Chem. Phys. 125, 141102 (2006).
http://dx.doi.org/10.1063/1.2358137
11.
11.F. Paesani, S. S. Xantheas, and G. A. Voth, J. Phys. Chem. B 113, 13118 (2009).
http://dx.doi.org/10.1021/jp907648y
12.
12.F. Paesani and G. A. Voth, J. Phys. Chem. B 113, 5702 (2009).
http://dx.doi.org/10.1021/jp810590c
13.
13.S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, J. Chem. Phys. 129, 074501 (2008).
http://dx.doi.org/10.1063/1.2968555
14.
14.S. Habershon, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009).
http://dx.doi.org/10.1063/1.3167790
15.
15.B. Guillot and Y. Guissani, J. Chem. Phys. 108, 10162 (1998).
http://dx.doi.org/10.1063/1.476475
16.
16.J. A. Poulsen, G. Nyman, and P. J. Rossky, Proc. Natl. Acad. Sci. U.S.A. 102, 6709 (2005).
http://dx.doi.org/10.1073/pnas.0408647102
17.
17.J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Chem. Theory Comput. 2, 1482 (2006).
http://dx.doi.org/10.1021/ct600167s
18.
18.K. Hyeon-Deuk and K. Ando, J. Chem. Phys. 131, 064501 (2009).
http://dx.doi.org/10.1063/1.3200937
19.
19.J. Liu, W. H. Miller, F. Paesani, W. Zhang, and D. A. Case, J. Chem. Phys. 131, 164509 (2009).
http://dx.doi.org/10.1063/1.3254372
20.
20.D. Marx, ChemPhysChem 7, 1848 (2006);
http://dx.doi.org/10.1002/cphc.200600128
20.D. Marx ChemPhysChem8, 209 (2007).
http://dx.doi.org/10.1002/cphc.200790002
21.
21.A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, J. Chem. Phys. 130, 194510 (2009).
http://dx.doi.org/10.1063/1.3125009
22.
22.M. E. Tuckerman, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, NIC Series Vol. 10, edited by J. Grotendorst, D. Marx, and A. Muramatsu (John von Neumann Institute for Computing, Jülich, 2002), pp. 269298.
23.
23.E. Neria, S. Fischer, and M. Karplus, J. Chem. Phys. 105, 1902 (1996).
http://dx.doi.org/10.1063/1.472061
24.
24.A. Pérez, M. E. Tuckerman, and M. H. Müser, J. Chem. Phys. 130, 184105 (2009).
http://dx.doi.org/10.1063/1.3126950
25.
25.R. A. Kuharski and P. J. Rossky, J. Chem. Phys. 82, 5164 (1985).
http://dx.doi.org/10.1063/1.448641
26.
26.H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific, Singapore, 2004).
27.
27.D. Marx and M. H. Müser, J. Phys.: Condens. Matter 11, R117 (1999).
http://dx.doi.org/10.1088/0953-8984/11/11/003
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/3/10.1063/1.3290958
Loading
/content/aip/journal/jcp/132/3/10.1063/1.3290958
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/3/10.1063/1.3290958
2010-01-15
2014-07-30

Abstract

Centroid molecular dynamics (CMD) is a popular method to extract approximate quantum dynamics from path integral simulations. Very recently we have shown that CMD gas phase infrared spectra exhibit significant artificial redshifts of stretching peaks, due to the so-called “curvature problem” imprinted by the effective centroid potential. Here we provide evidence that for condensed phases, and in particular for liquid water, CMD produces pronounced artificial redshifts for high-frequency vibrations such as the OH stretching band. This peculiar behavior intrinsic to the CMD method explains part of the unexpectedly large quantum redshifts of the stretching band of liquid water compared to classical frequencies, which is improved after applying a simple and rough “harmonic curvature correction.”

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/3/1.3290958.html;jsessionid=2n3e2oko6avns.x-aip-live-03?itemId=/content/aip/journal/jcp/132/3/10.1063/1.3290958&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/3/10.1063/1.3290958
10.1063/1.3290958
SEARCH_EXPAND_ITEM