Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Piris and J. M. Ugalde, J. Comput. Chem. 30, 2078 (2009).
2.T. L. Gilbert, Phys. Rev. B 12, 2111 (1975);
2.S. M. Valone, J. Chem. Phys. 73, 1344 (1980).
3.M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979).
4.D. A. Mazziotti, Chem. Phys. Lett. 338, 323 (2001).
5.M. Piris, in Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules, Advances in Chemical Physics Vol. 134, edited by D. A. Mazziotti (Wiley, New York, 2007), Chap. 14, pp. 387428.
6.P. Leiva and M. Piris, Int. J. Quantum Chem. 107, 1 (2007);
6.K. Pernal, O. Gritsenko, and E. J. Baerends, Phys. Rev. A 75, 012506 (2007);
6.D. R. Rohr, K. Pernal, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 129, 164105 (2008);
6.M. A. L. Marques and N. N. Lathiotakis, Phys. Rev. A 77, 032509 (2008);
6.S. Sharma, K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross, Phys. Rev. B 78, 201103 (2008);
6.R. Requist and O. Pankratov, Phys. Rev. B 77, 235121 (2008);
6.K. J. H. Giesbertz, K. Pernal, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 130, 114104 (2009);
6.N. N. Lathiotakis, N. Helbig, A. Zacarias, and E. K. U. Gross, J. Chem. Phys. 130, 064109 (2009).
7.M. Piris, X. Lopez, and J. M. Ugalde, J. Chem. Phys. 126, 214103 (2007);
7.M. Piris, X. Lopez, and J. M. Ugalde, Int. J. Quantum Chem. 108, 1660 (2008);
7.M. Piris, X. Lopez, and J. M. Ugalde, J. Chem. Phys. 128, 134102 (2008).
8.M. Piris, J. M. Matxain, and J. M. Ugalde, J. Chem. Phys. 129, 014108 (2008).
9.M. Piris, J. M. Matxain, X. Lopez, and J. M. Ugalde, J. Chem. Phys. 131, 021102 (2009).
10.N. N. Lathiotakis, N. Helbig, and E. K. U. Gross, Phys. Rev. B 75, 195120 (2007);
10.N. N. Lathiotakis and M. A. L. Marques, J. Chem. Phys. 128, 184103 (2008);
10.N. N. Lathiotakis, S. Sharma, J. K. Dewhurst, F. G. Eich, M. A. L. Marques, and E. K. U. Gross, Phys. Rev. A 79, 040501 (2009).
11.J. M. Herbert and J. E. Harriman, J. Chem. Phys. 118, 10835 (2003);
11.P. W. Ayers and S. Liu, Phys. Rev. A 75, 022514 (2007).
12.D. A. Mazziotti, Adv. Chem. Phys. 134, 21 (2007).
13.D. R. Rohr, Ph.D. thesis, Vrije Universiteit Amsterdam, 2008.
14.M. Piris, Int. J. Quantum Chem. 106, 1093 (2006).
15.P. Leiva and M. Piris, J. Chem. Phys. 123, 214102 (2005);
15.P. Leiva and M. Piris, J. Mol. Struct.: THEOCHEM 770, 45 (2006).
16.R. Fletcher, Practical Methods of Optimization, 2nd ed. (Wiley, New York, 1987).
17.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
18.S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F. Fischer, Phys. Rev. A 47, 3649 (1993).
19.Y. Ralchenko, A. Kramida, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, Version 3.1.5, 2008. Available at (2009, May 20), National Institute of Standards and Technology, Gaithersburg, MD.
20.V. I. Korobov, Phys. Rev. A 66, 024501 (2002).
21.M. W. Chase, Jr., NIST-JANAF Tables, 4th ed., J. Phys. Chem. Ref. Data Monograph 9, 59 (1998).
22.L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106, 1063 (1997).
23.M. Piris, PNOFID, iterative diagonalization for orbital optimization using the PNOF, downloadable at
24.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN03, Revision 02, Gaussian, Inc., Wallingford, CT, 2004.
25.J. M. Mercero, J. M. Matxain, X. Lopez, D. M. York, A. Largo, L. A. Eriksson, and J. M. Ugalde, Int. J. Mass Spectrom. 240, 37 (2005).

Data & Media loading...


Article metrics loading...



The spin-conserving density matrix functionaltheory is used to propose an improved natural orbital functional. The Piris reconstruction functional, PNOF, which is based on an explicit form of the two-particle cumulant satisfying necessary positivity conditions for the two-particle reduced density matrix, is used to reconstruct the latter. A new approach , as well as an extension of the known to spin-uncompensated systems lead to PNOF3. The theory is applied to the calculation of the total energies of the first- and second-row atoms (H–Ne) and a number of selected small molecules. The energy differences between the ground state and the lowest-lying excited state with different spin for these atoms, and the atomization energies of the considered molecules are also presented. The obtained values agree remarkably well with their corresponding both CCSD(T, full) and experimental values.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd