banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Dynamical heterogeneity in lattice glass models
Rent this article for
View: Figures


Image of FIG. 1.
FIG. 1.

Comparison and distinction of a caricature of a KCM with a LGM. In the KCM, any configuration is allowed, but move may only be made if a particle has at least one missing neighbor before and after the move. In the LGM, the global configuration is defined such that all particles must have at least one missing neighbor, and all dynamical moves must respect this rule. Note that the local environment around the moving particle is identical in this example, while the global configurations are distinct. Periodic boundary conditions are assumed for both panels.

Image of FIG. 2.
FIG. 2.

Crystallization thermodynamics in LGM. Top: The t154 model. refers to the chemical potential of the type 1 particles. The maximum density observed for the lattice is 0.5479 (exactly 1849 out of 3375 lattice sites occupied). The three plotted quenching rates vary between a 0.01 and 0.05 increase of per 10000 cycles. Bottom: A close up of the equivalent plot for the BM model. Note the clear discontinuity upon crystallization. Slower -increase rates produce a sharper discontinuity.

Image of FIG. 3.
FIG. 3.

Decay of the self-intermediate scattering function for . Densities are 0.3, 0.4, 0.45, 0.48, 0.50, 0.51, 0.52, 0.53, 0.535, 0.5375, 0.5400, 0.5425 from fastest relaxation to slowest relaxation. These densities are used in all plots in this paper unless otherwise indicated. Top: Plotted on a linear-log scale. Bottom: Same data as upper panel plotted on a vs scale. Lowest density curves are at the top left.

Image of FIG. 4.
FIG. 4.

Top: (time at which ) as a function of density, . Plotted for , with lowest at the top. Center: Beta stretching exponent of [from terminal fits ]. Lowest curve is at the top of the plot. Bottom: Plot of log scale against chemical potential of type 2 particles. The behavior is consistent with .

Image of FIG. 5.
FIG. 5.

Examples of stringlike motion apparent in the t154 model. (a) An example of a string with all neighboring particles removed. (b) A similar string in the context of other particles. Note that the string here is truly isolated in space, away from other mobile particles. In these figures, type 1 particles are white, type 2 particles are blue, and type 3 are green. Sites occupied at the initial time but vacated at the final time are shown in red. These pictures show only the differences in position of particles between the origin of time and the final time, not the path the particles took to achieve that displacement. All figures are at a density of 0.5400, with times in (a) 251, (b) 199 526. The -relaxation time for at this density is about .

Image of FIG. 6.
FIG. 6.

Examples cluster shapes in the (a) the t154, model, density and (b) the KA model, density . Arrows indicate motion between initial and final times. Time separation is 1/10th of the -relaxation time. In the t154 model, we see more fractal and disconnected clusters, while in the KA model, mobile domains tend to be smoother clusters.

Image of FIG. 7.
FIG. 7.

Violation of the Stokes–Einstein relation, , using at . Data has been normalized to at the lowest density.

Image of FIG. 8.
FIG. 8.

van Hove function for and various times. Distances are measured independently along each coordinate axis. The times plotted, from left to right, are , 316227 (approximately the -relaxation time), and . An exponential fit to the tail of the case is shown by a dotted line.

Image of FIG. 9.
FIG. 9.

-dependent diffusion . Densities of 0.3000 (upper) and 0.5425 (lower). The higher density curve is multiplied by a scale factor of for ease of comparison. A dotted flat line is included for reference of behavior expected in the purely Fickian case.

Image of FIG. 10.
FIG. 10.

Top: Plot of at for densities 0.51, 0.52, 0.53, and 0.54. Bottom: Plot of for the same densities. Peak values correspond to lower bounds for of the value of in the upper panel at .


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dynamical heterogeneity in lattice glass models