Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/5/10.1063/1.3298881
1.
1.J. Stieglitz, Am. Chem. J. 21, 101 (1899).
2.
2.Stable Carbocation Chemistry, edited by P. R. Schleyer and G. K. Prakash (Wiley, New York, 1997).
3.
3.Carbocation Chemistry, edited by G. K. Prakash and G. A. Olah (Wiley, New York, 2004).
4.
4.T. Baer, C. Ng, and I. Powis, The Structure, Energetics and Dynamics of Organic Ions (Wiley, New York, 1996).
5.
5.G. A. Olah and M. B. Comisarow, J. Am. Chem. Soc. 86, 5682 (1964);
http://dx.doi.org/10.1021/ja01078a058
5.G. A. Olah, R. H. Schlosberg, D. P. Kelly, and Gh. D. Mateescu, J. Am. Chem. Soc. 92, 2546 (1970).
http://dx.doi.org/10.1021/ja00711a057
6.
6.P. Buzek, P. R. Schleyer, S. Sieber, W. Koch, J. W. de M. Carneiro, H. Vančik, and D. E. Sunko, J. Chem. Soc., Chem. Commun. 1991, 671;
http://dx.doi.org/10.1039/c39910000671
6.H. Vančik, V. Gabelica, D. E. Sunko, P. Buzek, and P. R. Schleyer, J. Phys. Org. Chem. 6, 427 (1993).
http://dx.doi.org/10.1002/poc.610060708
7.
7.J. L. Holmes, C. Aubrey, and P. M. Mayer, Assigning Structures to Ions in Mass Spectrometry (CRC, Boca Raton, 2007).
8.
8.T. W. Hartquist and D. A. Williams, The Molecular Astrophysics of Stars and Galaxies (Clarendon, Oxford, 1998).
9.
9.O. Dopfer, D. Roth, and J. P. Maier, J. Am. Chem. Soc. 124, 494 (2002);
http://dx.doi.org/10.1021/ja012004p
9.O. Dopfer, D. Roth, and J. P. Maier, Int. J. Mass Spectrom. 218, 281 (2002);
http://dx.doi.org/10.1016/S1387-3806(02)00737-6
9.D. Roth and O. Dopfer, Phys. Chem. Chem. Phys. 4, 4855 (2002).
http://dx.doi.org/10.1039/b206170h
10.
10.N. Solcà and O. Dopfer, Angew. Chem., Int. Ed. 41, 3628 (2002).
http://dx.doi.org/10.1002/1521-3773(20021004)41:19<3628::AID-ANIE3628>3.0.CO;2-1
11.
11.H. S. Andrei, N. Solcà, and O. Dopfer, Angew. Chem., Int. Ed. 47, 395 (2008).
http://dx.doi.org/10.1002/anie.200704163
12.
12.G. E. Douberly, A. M. Ricks, B. W. Ticknor, P. R. Schleyer, and M. A. Duncan, J. Am. Chem. Soc. 129, 13782 (2007).
http://dx.doi.org/10.1021/ja0753593
13.
13.G. E. Douberly, A. M. Ricks, P. R. Schleyer, and M. A. Duncan, J. Chem. Phys. 128, 021102 (2008).
http://dx.doi.org/10.1063/1.2828553
14.
14.G. E. Douberly, A. M. Ricks, P. R. Schleyer, and M. A. Duncan, J. Phys. Chem. A 112, 4869 (2008).
http://dx.doi.org/10.1021/jp802020n
15.
15.G. E. Douberly, A. M. Ricks, B. W. Ticknor, W. C. McKee, P. R. Schleyer, and M. A. Duncan, J. Phys. Chem. A 112, 1897 (2008);
http://dx.doi.org/10.1021/jp710808e
15.A. M. Ricks, G. E. Douberly, P. R. Schleyer, and M. A. Duncan, Chem. Phys. Lett. 480, 17 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.08.063
16.
16.V. I. Minkin, M. N. Glukhovstev, and B. Y. Simkin, Aromaticity and Antiaromaticity. Electronic and Structural Aspects (Wiley, New York, 1994).
17.
17.R. Breslow, J. T. Groves, and G. Ryan, J. Am. Chem. Soc. 89, 5048 (1967);
http://dx.doi.org/10.1021/ja00995a042
17.R. Breslow and J. T. Groves, J. Am. Chem. Soc. 92, 984 (1970).
http://dx.doi.org/10.1021/ja00707a040
18.
18.N. C. Craig, J. Pranata, S. J. Reignanum, J. R. Sprague, and P. S. Stevens, J. Am. Chem. Soc. 108, 4378 (1986).
http://dx.doi.org/10.1021/ja00275a025
19.
19.F. P. Lossing, Can. J. Chem. 50, 3973 (1972).
http://dx.doi.org/10.1139/v72-629
20.
20.L. Radom, P. C. Hariharan, J. A. Pople, and P. R. Schleyer, J. Am. Chem. Soc. 98, 10 (1976).
http://dx.doi.org/10.1021/ja00417a003
21.
21.K. Raghavachari, R. A. Whiteside, J. A. Pople, and P. R. Schleyer, J. Am. Chem. Soc. 103, 5649 (1981).
http://dx.doi.org/10.1021/ja00409a004
22.
22.A. Cameron, J. Leszezynski, and M. C. Zerner, J. Phys. Chem. 93, 139 (1989).
http://dx.doi.org/10.1021/j100338a031
23.
23.M. N. Glukhovtsev, S. Laiter, and A. Pross, J. Phys. Chem. 100, 17801 (1996).
http://dx.doi.org/10.1021/jp961882k
24.
24.B. S. Jursic, J. Mol. Struct.: THEOCHEM 491, 193 (1999).
http://dx.doi.org/10.1016/S0166-1280(99)00112-8
25.
25.(a) M. W. Wong and L. Radom, J. Am. Chem. Soc. 111, 6976 (1989);
http://dx.doi.org/10.1021/ja00200a012
25.(b) S. A. Maluendes, A. D. McLean, K. Yamashita, and E. Herbst, J. Phys. Chem. 99, 2812 (1993);
http://dx.doi.org/10.1063/1.465190
25.(c) G. Liu, Z. Li, Y. Ding, Q. Fu, X. Huang, C. Sun, and A. Tang, J. Phys. Chem. A 106, 10415 (2002).
http://dx.doi.org/10.1021/jp0212085
26.
26.T. Gilbert, R. Pflab, I. Fischer, and P. Chen, J. Chem. Phys. 112, 2575 (2000);
http://dx.doi.org/10.1063/1.480830
26.P. Chen, private communication (2009).
27.
27.M. Wyss, E. Riaplov, and J. P. Maier, J. Chem. Phys. 114, 10355 (2001).
http://dx.doi.org/10.1063/1.1367394
28.
28.D. Smith, Chem. Rev. (Washington, D.C.) 92, 1473 (1992).
http://dx.doi.org/10.1021/cr00015a001
29.
29.J. L. McLain, V. Poterya, C. D. Molek, D. M. Jackson, L. M. Babcock, and N. G. Adams, J. Phys. Chem. A 109, 5119 (2005).
http://dx.doi.org/10.1021/jp0444159
30.
30.G. B. I. Scott, D. A. Fairley, C. G. Freeman, M. J. McEwan, and V. G. Anicich, J. Phys. Chem. A 103, 1073 (1999).
http://dx.doi.org/10.1021/jp983797d
31.
31.G. B. I. Scott, D. B. Milligan, D. A. Fairley, C. G. Freeman, and M. J. McEwan, J. Chem. Phys. 112, 4959 (2000).
http://dx.doi.org/10.1063/1.481050
32.
32.A. Korth, M. L. Marconi, D. A. Mendis, F. R. Krueger, A. K. Richter, R. P. Lin, D. L. Mitchell, K. A. Anderson, C. W. Carlson, H. Rème, J. A. Sauvaud, and C. d'Uston, Nature (London) 337, 53 (1989).
http://dx.doi.org/10.1038/337053a0
33.
33.M. Okumura, L. I. Yeh, J. D. Myers, and Y. T. Lee, J. Phys. Chem. 94, 3416 (1990).
http://dx.doi.org/10.1021/j100372a014
34.
34.E. J. Bieske and O. Dopfer, Chem. Rev. (Washington, D.C.) 100, 3963 (2000).
http://dx.doi.org/10.1021/cr990064w
35.
35.M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Hensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
36.
36.M. S. Gordon and M. W. Schmidt, Theory and Applications of Computational Chemistry: The First Forty Years (Wiley, New York, 2002).
37.
37.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
38.
38.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
39.
39.R. Bartlett, private communication (2009).
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.3298881 for details of DFT computations and spectra measured under other conditions.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/5/10.1063/1.3298881
Loading
/content/aip/journal/jcp/132/5/10.1063/1.3298881
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/5/10.1063/1.3298881
2010-02-02
2016-12-03

Abstract

ions produced with a pulsed discharge source and cooled in a supersonic beam are studied with infrared laser photodissociationspectroscopy in the region using the rare gas tagging method. Vibrational bands in the C–H stretching and fingerprint regions confirm the presence of both the cyclopropenyl and propargyl cations. Because there is a high barrier separating these two structures, they are presumed to be produced by different routes in the plasma chemistry; their relative abundance can be adjusted by varying the ion source conditions. Prominent features for the cyclopropenyl species include the asymmetric carbon stretch at and the asymmetric C–H stretch at , whereas propargyl has the scissors at 1445, the C–C triple bond stretch at 2077 and three C–H stretches (, , and ) at 3004, 3093, and . Density functional theory computations of vibrational spectra for the two isomeric ions with and without the argon tag reproduce the experimental features qualitatively; according to theory the tag atom only perturbs the spectra slightly. Although these data confirm the accepted structural pictures of the cyclopropenyl and propargyl cations, close agreement between theoretical predictions and the measured vibrational band positions and intensities cannot be obtained. Band intensities are influenced by the energy dependence and dynamics of photodissociation, but there appear to be fundamental problems in computed band positions independent of the level of theory employed. These new data provide infrared signatures in the fingerprint region for these prototypical carbocations that may aid in their astrophysical detection.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/5/1.3298881.html;jsessionid=akZuNBk4VF9p6Ra2LxNHGdjh.x-aip-live-03?itemId=/content/aip/journal/jcp/132/5/10.1063/1.3298881&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/5/10.1063/1.3298881&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/5/10.1063/1.3298881'
Right1,Right2,Right3,