Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Stieglitz, Am. Chem. J. 21, 101 (1899).
2.Stable Carbocation Chemistry, edited by P. R. Schleyer and G. K. Prakash (Wiley, New York, 1997).
3.Carbocation Chemistry, edited by G. K. Prakash and G. A. Olah (Wiley, New York, 2004).
4.T. Baer, C. Ng, and I. Powis, The Structure, Energetics and Dynamics of Organic Ions (Wiley, New York, 1996).
5.G. A. Olah and M. B. Comisarow, J. Am. Chem. Soc. 86, 5682 (1964);
5.G. A. Olah, R. H. Schlosberg, D. P. Kelly, and Gh. D. Mateescu, J. Am. Chem. Soc. 92, 2546 (1970).
6.P. Buzek, P. R. Schleyer, S. Sieber, W. Koch, J. W. de M. Carneiro, H. Vančik, and D. E. Sunko, J. Chem. Soc., Chem. Commun. 1991, 671;
6.H. Vančik, V. Gabelica, D. E. Sunko, P. Buzek, and P. R. Schleyer, J. Phys. Org. Chem. 6, 427 (1993).
7.J. L. Holmes, C. Aubrey, and P. M. Mayer, Assigning Structures to Ions in Mass Spectrometry (CRC, Boca Raton, 2007).
8.T. W. Hartquist and D. A. Williams, The Molecular Astrophysics of Stars and Galaxies (Clarendon, Oxford, 1998).
9.O. Dopfer, D. Roth, and J. P. Maier, J. Am. Chem. Soc. 124, 494 (2002);
9.O. Dopfer, D. Roth, and J. P. Maier, Int. J. Mass Spectrom. 218, 281 (2002);
9.D. Roth and O. Dopfer, Phys. Chem. Chem. Phys. 4, 4855 (2002).
10.N. Solcà and O. Dopfer, Angew. Chem., Int. Ed. 41, 3628 (2002).<3628::AID-ANIE3628>3.0.CO;2-1
11.H. S. Andrei, N. Solcà, and O. Dopfer, Angew. Chem., Int. Ed. 47, 395 (2008).
12.G. E. Douberly, A. M. Ricks, B. W. Ticknor, P. R. Schleyer, and M. A. Duncan, J. Am. Chem. Soc. 129, 13782 (2007).
13.G. E. Douberly, A. M. Ricks, P. R. Schleyer, and M. A. Duncan, J. Chem. Phys. 128, 021102 (2008).
14.G. E. Douberly, A. M. Ricks, P. R. Schleyer, and M. A. Duncan, J. Phys. Chem. A 112, 4869 (2008).
15.G. E. Douberly, A. M. Ricks, B. W. Ticknor, W. C. McKee, P. R. Schleyer, and M. A. Duncan, J. Phys. Chem. A 112, 1897 (2008);
15.A. M. Ricks, G. E. Douberly, P. R. Schleyer, and M. A. Duncan, Chem. Phys. Lett. 480, 17 (2009).
16.V. I. Minkin, M. N. Glukhovstev, and B. Y. Simkin, Aromaticity and Antiaromaticity. Electronic and Structural Aspects (Wiley, New York, 1994).
17.R. Breslow, J. T. Groves, and G. Ryan, J. Am. Chem. Soc. 89, 5048 (1967);
17.R. Breslow and J. T. Groves, J. Am. Chem. Soc. 92, 984 (1970).
18.N. C. Craig, J. Pranata, S. J. Reignanum, J. R. Sprague, and P. S. Stevens, J. Am. Chem. Soc. 108, 4378 (1986).
19.F. P. Lossing, Can. J. Chem. 50, 3973 (1972).
20.L. Radom, P. C. Hariharan, J. A. Pople, and P. R. Schleyer, J. Am. Chem. Soc. 98, 10 (1976).
21.K. Raghavachari, R. A. Whiteside, J. A. Pople, and P. R. Schleyer, J. Am. Chem. Soc. 103, 5649 (1981).
22.A. Cameron, J. Leszezynski, and M. C. Zerner, J. Phys. Chem. 93, 139 (1989).
23.M. N. Glukhovtsev, S. Laiter, and A. Pross, J. Phys. Chem. 100, 17801 (1996).
24.B. S. Jursic, J. Mol. Struct.: THEOCHEM 491, 193 (1999).
25.(a) M. W. Wong and L. Radom, J. Am. Chem. Soc. 111, 6976 (1989);
25.(b) S. A. Maluendes, A. D. McLean, K. Yamashita, and E. Herbst, J. Phys. Chem. 99, 2812 (1993);
25.(c) G. Liu, Z. Li, Y. Ding, Q. Fu, X. Huang, C. Sun, and A. Tang, J. Phys. Chem. A 106, 10415 (2002).
26.T. Gilbert, R. Pflab, I. Fischer, and P. Chen, J. Chem. Phys. 112, 2575 (2000);
26.P. Chen, private communication (2009).
27.M. Wyss, E. Riaplov, and J. P. Maier, J. Chem. Phys. 114, 10355 (2001).
28.D. Smith, Chem. Rev. (Washington, D.C.) 92, 1473 (1992).
29.J. L. McLain, V. Poterya, C. D. Molek, D. M. Jackson, L. M. Babcock, and N. G. Adams, J. Phys. Chem. A 109, 5119 (2005).
30.G. B. I. Scott, D. A. Fairley, C. G. Freeman, M. J. McEwan, and V. G. Anicich, J. Phys. Chem. A 103, 1073 (1999).
31.G. B. I. Scott, D. B. Milligan, D. A. Fairley, C. G. Freeman, and M. J. McEwan, J. Chem. Phys. 112, 4959 (2000).
32.A. Korth, M. L. Marconi, D. A. Mendis, F. R. Krueger, A. K. Richter, R. P. Lin, D. L. Mitchell, K. A. Anderson, C. W. Carlson, H. Rème, J. A. Sauvaud, and C. d'Uston, Nature (London) 337, 53 (1989).
33.M. Okumura, L. I. Yeh, J. D. Myers, and Y. T. Lee, J. Phys. Chem. 94, 3416 (1990).
34.E. J. Bieske and O. Dopfer, Chem. Rev. (Washington, D.C.) 100, 3963 (2000).
35.M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Hensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
36.M. S. Gordon and M. W. Schmidt, Theory and Applications of Computational Chemistry: The First Forty Years (Wiley, New York, 2002).
37.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
38.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
39.R. Bartlett, private communication (2009).
40.See supplementary material at for details of DFT computations and spectra measured under other conditions.[Supplementary Material]

Data & Media loading...


Article metrics loading...



ions produced with a pulsed discharge source and cooled in a supersonic beam are studied with infrared laser photodissociationspectroscopy in the region using the rare gas tagging method. Vibrational bands in the C–H stretching and fingerprint regions confirm the presence of both the cyclopropenyl and propargyl cations. Because there is a high barrier separating these two structures, they are presumed to be produced by different routes in the plasma chemistry; their relative abundance can be adjusted by varying the ion source conditions. Prominent features for the cyclopropenyl species include the asymmetric carbon stretch at and the asymmetric C–H stretch at , whereas propargyl has the scissors at 1445, the C–C triple bond stretch at 2077 and three C–H stretches (, , and ) at 3004, 3093, and . Density functional theory computations of vibrational spectra for the two isomeric ions with and without the argon tag reproduce the experimental features qualitatively; according to theory the tag atom only perturbs the spectra slightly. Although these data confirm the accepted structural pictures of the cyclopropenyl and propargyl cations, close agreement between theoretical predictions and the measured vibrational band positions and intensities cannot be obtained. Band intensities are influenced by the energy dependence and dynamics of photodissociation, but there appear to be fundamental problems in computed band positions independent of the level of theory employed. These new data provide infrared signatures in the fingerprint region for these prototypical carbocations that may aid in their astrophysical detection.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd