banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Extraction of state-to-state reactive scattering attributes from wave packet in reactant Jacobi coordinates
Rent this article for


Image of FIG. 1.
FIG. 1.

State-to-state DCSs at collision energies of 0.4 and 0.8 eV of the reaction (left column) and of the reaction (right column), calculated using the collocation and coordinate transform RCB methods. It is seen that the two methods give identical and converged DCSs for this reaction with parameters listed in Table I.

Image of FIG. 2.
FIG. 2.

2D contours of the potential energy surface of the reaction along and degrees of freedom on the -shaped grid with the energy in the angular coordinate optimized. The parameters in Table I are defined in the 2D plot.

Image of FIG. 3.
FIG. 3.

Total reaction probabilities obtained from initial wave packet placed at different positions , 12.0, and 16.0 a.u. The results indicate that the entire van der Waals well in the reactant channel should be included for an accurate calculation of the total reaction probabilities above the collision energy of 0.45 eV.

Image of FIG. 4.
FIG. 4.

Total reaction probabilities for the reaction obtained by the state-to-state reaction probabilities for , 20, 30, 40, 50, and 60 of the abstraction reaction (a) and exchange reaction (e).

Image of FIG. 5.
FIG. 5.

Comparison between the total reaction probabilities for the reaction obtained by summing the state-to-state reaction probabilities with those calculated directly by a flux method for , 20, and 40. The upper panel is for the total reaction while the lower panel is for the abstraction reaction only.

Image of FIG. 6.
FIG. 6.

A comparison for a state-to-state ICSs for the reaction, at selected collision energies of 0.4, 0.8, and 1.2 eV for the abstraction reaction (left panels) and 0.8, 1.0, and 1.2 eV for the exchange reaction (right panel). The product analysis planes are placed at , 9.0, and 10.0 a.u. for the abstraction reaction and at , 10.0, and 11.0 a.u. for the exchange reaction. The positions of the product state analysis plane has little influence on the results, even they are not at the true asymptote.

Image of FIG. 7.
FIG. 7.

Same as in Fig. 6, but for a comparison for a state-to-state ICSs as a function of collision energy.

Image of FIG. 8.
FIG. 8.

Same as in Fig. 7, but for a comparison of the total DCSs.

Image of FIG. 9.
FIG. 9.

Same as in Fig. 8, but for a comparison at a state-to-state level for product states as , (0,5) and (0,8).


Generic image for table
Table I.

Parameters used in the numerical calculations. (Atomic units are used if not otherwise stated.)


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Extraction of state-to-state reactive scattering attributes from wave packet in reactant Jacobi coordinates