Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/132/9/10.1063/1.3330920
1.
1.P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev. A 6, 2401 (1972).
http://dx.doi.org/10.1103/PhysRevA.6.2401
2.
2.G. Durand, L. Leger, F. Rondelez, and M. Veyssie, Phys. Rev. Lett. 22, 1361 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.1361
3.
3.M. J. Stephen and J. P. Straley, Rev. Mod. Phys. 46, 617 (1974).
http://dx.doi.org/10.1103/RevModPhys.46.617
4.
4.T. Kirchhoff, H. Löwen, and R. Klein, Phys. Rev. E 53, 5011 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.5011
5.
5.P. P. Jose and B. Bagchi, J. Chem. Phys. 125, 184901 (2006).
http://dx.doi.org/10.1063/1.2364188
6.
6.R. Bandyopadhyay, D. Liang, H. Yardimci, D. A. Sessoms, M. A. Borthwick, S. G. J. Mochrie, J. L. Harden, and R. L. Leheny, Phys. Rev. Lett. 93, 228302 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.228302
7.
7.A. Madsen, J. Als-Nielsen, and G. Grübel, Phys. Rev. Lett. 90, 085701 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.085701
8.
8.P. N. Pusey, Liquids, Freezing, and the Glass Transition (North-Holland, Amsterdam, 1991) pp. 763942.
9.
9.P. G. De Gennes, Physica 25, 825 (1959).
http://dx.doi.org/10.1016/0031-8914(59)90006-0
10.
10.C. Graf, M. Deggelmann, M. Hagenbüchle, H. Kramer, R. Krause, C. Martin, and R. Weber, J. Chem. Phys. 95, 6284 (1991).
http://dx.doi.org/10.1063/1.461548
11.
11.A. Robert, J. Wagner, W. Härtl, T. Autenrieth, and G. Grübel, Eur. Phys. J. E 25, 77 (2008).
http://dx.doi.org/10.1140/epje/i2007-10265-5
12.
12.D. M. E. Thies-Weesie, J. P. de Hoog, M. H. H. Mendiola, A. V. Petukhov, and G. J. Vroege, Chem. Mater. 19, 5538 (2007).
http://dx.doi.org/10.1021/cm071229h
13.
13.B. J. Lemaire, P. Davidson, J. Ferré, J. P. Jamet, D. Petermann, P. Panine, I. Dozov, and J. P. Jolivet, Eur. Phys. J. E 13, 291 (2004).
http://dx.doi.org/10.1140/epje/i2003-10078-6
14.
14.G. J. Vroege and H. N. W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992).
http://dx.doi.org/10.1088/0034-4885/55/8/003
15.
15.B. J. Lemaire, P. Davidson, D. Petermann, P. Panine, I. Dozov, D. Stoenescu, and J. P. Jolivet, Eur. Phys. J. E 13, 309 (2004).
http://dx.doi.org/10.1140/epje/i2003-10079-5
16.
16.B. J. Lemaire, P. Davidson, J. Ferré, J. P. Jamet, P. Panine, I. Dozov, and J. P. Jolivet, Phys. Rev. Lett. 88, 125507 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.125507
17.
17.A. Fluerasu, A. Moussaïd, A. Madsen, and A. Schofield, Phys. Rev. E 76, 010401(R) (2007).
http://dx.doi.org/10.1103/PhysRevE.76.010401
18.
18.G. Nägele and P. Baur, Physica A 245, 297 (1997).
http://dx.doi.org/10.1016/S0378-4371(97)00307-5
19.
19.M. J. Solomon and D. V. Boger, J. Rheol. 42, 929 (1998).
http://dx.doi.org/10.1122/1.550961
20.
20.M. M. Tirado, C. L. Martinez, and J. G. de la Torre, J. Chem. Phys. 81, 2047 (1984).
http://dx.doi.org/10.1063/1.447827
21.
21.C. W. J. Beenakker and P. Mazur, Physica A 120, 388 (1983).
http://dx.doi.org/10.1016/0378-4371(83)90061-4
22.
22.Considering an ionic strength of 10 mM, the data of Solomon and Boger (Ref. 19) give a value of using the low concentration expansion and 0.25 using the overall formula (for an aspect ratio of 8.4). Rheology measurements performed at room temperature in aqueous suspension at the same concentration (6.7%) also yield , but the comparison is not straightforward due to the lack of information on the electrostatic effects in the presence of propane-1,3-diol.
23.
23.A. J. Banchio, J. Gapinski, A. Patkowski, W. Häußler, A. Fluerasu, S. Sacanna, P. Holmqvist, G. Meier, M. P. Lettinga, and G. Nägele, Phys. Rev. Lett. 96, 138303 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.138303
24.
24.We define a 2D system as invariant under translation along the normal direction, in contrast with the extensively studied quasi-2D systems that consist of particles confined at an interface or between rigid boundaries.
25.
25.J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff, Dordrecht, 1983).
26.
26.E. Falck, J. M. Lahtinen, I. Vattulainen, and T. Ala-Nissila, Eur. Phys. J. E 13, 267 (2004).
http://dx.doi.org/10.1140/epje/i2003-10075-9
http://aip.metastore.ingenta.com/content/aip/journal/jcp/132/9/10.1063/1.3330920
Loading
/content/aip/journal/jcp/132/9/10.1063/1.3330920
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/132/9/10.1063/1.3330920
2010-03-02
2016-09-25

Abstract

Using x-ray photon correlation spectroscopy, we studied the dynamics in the nematic phase of a nanorodsuspension. The collective diffusion coefficient in the plane perpendicular to the director varies sharply with the wave vector. Combining the structure factor and the diffusion coefficient, we find that the hydrodynamic function of the phase decreases by more than a factor of 10 when going from length scales comparable to the interparticle distance toward larger values. Thus, the collective dynamics of the nematic phase experiences strong and scale-dependent slowing down, in contrast with isotropic suspensions of slender rods or of spherical particles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/132/9/1.3330920.html;jsessionid=5FvFVC_24F78QcavXfUjFBSY.x-aip-live-03?itemId=/content/aip/journal/jcp/132/9/10.1063/1.3330920&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/132/9/10.1063/1.3330920&pageURL=http://scitation.aip.org/content/aip/journal/jcp/132/9/10.1063/1.3330920'
Right1,Right2,Right3,