Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
2.G. Worth and L. S. Cederbaum, Annu. Rev. Phys. Chem. 55, 127 (2004).
3.B. G. Levine and T. J. Martinez, Annu. Rev. Phys. Chem. 58, 613 (2007).
4.M. I. Lester, R. A. Loomis, R. L. Schwartz, and S. P. Walch, J. Phys. Chem. A 101, 9195 (1997).
5.D. T. Anderson, M. W. Todd, and M. I. Lester, J. Chem. Phys. 110, 11117 (1999).
6.M. W. Todd, D. T. Anderson, and M. I. Lester, J. Phys. Chem. A 105, 10031 (2001).
7.I. B. Pollack, Y. Lei, T. A. Stephenson, and M. I. Lester, Chem. Phys. Lett. 421, 324 (2006).
8.P. A. Cleary, L. P. Dempsey, C. Murray, M. I. Lester, J. Klos, and M. H. Alexander, J. Chem. Phys. 126, 204316 (2007).
9.L. P. Dempsey, P. A. Cleary, C. Murray, and M. I. Lester, J. Chem. Phys. 127, 151101 (2007).
10.L. P. Dempsey, C. Murray, P. A. Cleary, and M. I. Lester, Phys. Chem. Chem. Phys. 10, 1424 (2008).
11.L. P. Dempsey, T. D. Sechler, C. Murray, M. I. Lester, and S. Matsika, J. Chem. Phys. 130, 104307 (2009).
12.M. Ortiz-Suárez, M. F. Witinski, and H. F. Davis, J. Chem. Phys. 124, 201106 (2006).
13.D. R. Yarkony, J. Phys. Chem. 100, 18612 (1996).
14.D. R. Yarkony, J. Chem. Phys. 111, 6661 (1999).
15.B. C. Hoffman and D. R. Yarkony, J. Chem. Phys. 113, 10091 (2000).
16.M. A. Collins and D. -H. Zhang, private communication.
17.K. Han, private communication.
18.B. C. Shepler, E. Epifanovsky, P. Zhang, J. M. Bowman, A. I. Krylov, and K. Morokuma, J. Phys. Chem. A 112, 13267 (2008).
19.J. E. Mann, Z. Xie, J. D. Savee, B. J. Braams, J. M. Bowman, and R. E. Continetti, J. Am. Chem. Soc. 130, 3730 (2008).
20.J. E. Mann, Z. Xie, J. D. Savee, B. J. Braams, J. M. Bowman, and R. E. Continetti, J. Chem. Phys. 130, 041102 (2009).
21.M. Yang, D. H. Zhang, M. A. Collins, and S. -Y. Lee, J. Chem. Phys. 115, 174 (2001).
22.H. -J. Werner, Mol. Phys. 89, 645 (1996).
23.T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
24.J. D. Coe, B. G. Levine, and T. J. Martínez, J. Phys. Chem. A 111, 11302 (2007);
24.H. Tao, B. G. Levine, and T. J. Martínez, J. Phys. Chem. A 113, 13656 (2009).
25.H. -J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985).
26.MOLPRO, a package of ab initio programs, version 2008.1, H. -J. Werner, P. J. Knowles, R. D. Amos, et al..
27.B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009).
28.See supplementary material at for a description of the assignment of final rovibrational states for OH and and a plot of the latter versus for and 1.[Supplementary Material]

Data & Media loading...


Article metrics loading...



We report results of a classical trajectory calculation of the postquenching dynamics of OH by . This is done by performing roughly 100 000 trajectories at previously identified conical intersections (CoIs) [B. C. Hoffman and D. R. Yarkony, J. Chem. Phys.113, 10091 (2000)]. The initial momenta are sampled fully and partially microcanonically, corresponding to “adiabatic” and “diabatic” model of the dynamics, respectively. The trajectories are propagated on a new ground stateab initio-based potential energy surface. This surface is a permutationally invariant fit to roughly 23 000 electronic energies (multireference configuration interaction/correlation-consistent-augmented-triple-zeta basis) at configurations obtained mostly from direct-dynamics calculations (complete active space second order perturbation theory with correlation-consistent-augment double-zeta basis), also initiated at the CoIs. Final rovibrational state distributions of the ground electronic state OH product and the H-atom translational energy distributions for abstraction and insertion mechanisms are calculated and compared to experimental ones. Agreement for these observable quantities is good. The branching between reactive and nonreactive quenching is sensitive to the momenta sampling; very good agreement with experiment is obtained using the diabatic sampling but not with the adiabatic sampling. The calculated rovibrational distributions (not measured experimentally) are also presented.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd