1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/133/10/10.1063/1.3476262
1.
1.P. Yue, J. J. Feng, C. Liu, and J. Shen, J. Fluid Mech. 515, 293 (2004).
http://dx.doi.org/10.1017/S0022112004000370
2.
2.F. -H. Lin, C. Liu, and P. Zhang, Commun. Pure Appl. Math. 58, 1437 (2005).
http://dx.doi.org/10.1002/cpa.20074
3.
3.M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1988).
4.
4.A. C. Eringen, Nonlocal Continuum Theories (Springer, New York, 2002).
5.
5.C. Liu, in Multi-Scale Phenomena in Complex Fluids: Modeling, Analysis and Numerical Simulation, Series in Contemporary Applied Math, Vol. 12, edited by T. Y. Hou, C. Liu, and J.-G. Liu (World Scientific Publishing, Singapore, 2008).
6.
6.R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Fluids, Fluid Mechanics (Wiley, New York, 1977);
6.R. B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss, Dynamics of Polymeric Fluids, Kinetic Theory (Wiley, New York, 1977).
7.
7.P. Yue, J. J. Feng, C. Liu, and J. Shen, J. Fluid Mech. 540, 427 (2005).
http://dx.doi.org/10.1017/S0022112005006166
8.
8.P. Sheng, J. Zhang, and C. Liu, Prog. Theor. Phys. Suppl. 175, 131 (2008).
http://dx.doi.org/10.1143/PTPS.175.131
9.
9.J. Zhang, X. Gong, C. Liu, W. Wen, and P. Sheng, Phys. Rev. Lett. 101, 194503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.194503
10.
10.R. Ryham, C. Liu, and L. Zikatanov, Discrete Contin. Dyn. Syst., Ser. B 8, 649 (2007).
11.
11.B. Franklin, W. Brownrigg, and M. Farish, Philos. Trans. R. Soc. London 64, 445 (1774);
http://dx.doi.org/10.1098/rstl.1774.0044
11.M. G. Velarde, Interfacial Phenomena and the Marangoni Effect (Springer, New York, 2003).
12.
12.D. Goulding, J. P. Hansen, and S. Melchionna, Phys. Rev. Lett. 85, 1132 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1132
13.
13.D. Goulding, S. Melchionna, and J. -P. Hansen, Phys. Chem. Chem. Phys. 3, 1644 (2001).
http://dx.doi.org/10.1039/b009434j
14.
14.B. Eisenberg, Biophys. Chem. 100, 507 (2003).
http://dx.doi.org/10.1016/S0301-4622(02)00302-2
15.
15.D. Boda, W. Nonner, M. Valisko, D. Henderson, B. Eisenberg, and D. Gillespie, Biophys. J. 93, 1960 (2007).
http://dx.doi.org/10.1529/biophysj.107.105478
16.
16.D. Boda, M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie, Phys. Rev. Lett. 98, 168102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.168102
17.
17.D. Boda, M. Valisko, D. Henderson, B. Eisenberg, D. Gillespie, and W. Nonner, J. Gen. Physiol. 133, 497 (2009).
http://dx.doi.org/10.1085/jgp.200910211
18.
18.D. Boda, D. D. Busath, D. Henderson, and S. Sokolowski, J. Phys. Chem. B 104, 8903 (2000).
http://dx.doi.org/10.1021/jp0019658
19.
19.W. Nonner, L. Catacuzzeno, and B. Eisenberg, Biophys. J. 79, 1976 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76446-0
20.
20.H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, MA, 1980).
21.
21.M. A. Biot, Variational Principles in Heat Transfer: A Unified Lagrangian Analysis of Dissipative Phenomena (Oxford University Press, New York, 1970).
22.
22.I. M. Gelfand and S. V. Fromin, Calculus of Variations (Dover, New York, 1963).
23.
23.A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani, and C. Villani, Monatsh. Math. 142, 35 (2004).
http://dx.doi.org/10.1007/s00605-004-0239-2
24.
24.L. Rayleigh, previously J. W. Strutt, Proc. London Math. Soc. IV, 357 (1873).
25.
25.L. Onsager, Phys. Rev. 37, 405 (1931).
http://dx.doi.org/10.1103/PhysRev.37.405
26.
26.L. Onsager, Phys. Rev. 38, 2265 (1931).
http://dx.doi.org/10.1103/PhysRev.38.2265
27.
27.V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed. (Springer, New York, 1997).
28.
28.J. Taylor, Classical Mechanics (University Science Books, Sausalito, CA, 2005).
29.
29.L. D. Landau and E. M. Lifshitz, Statistical Physics, Course of Theoretical Physics Vol. 5, 3rd ed. (Butterworths, London, 1996).
30.
30.Q. Du, Y. Hyon, and C. Liu, Multiscale Model. Simul. 7, 978 (2008).
http://dx.doi.org/10.1137/070708287
31.
31.Q. Du, C. Liu, and P. Yu, Multiscale Modeling & Simulation 4, 709 (2005).
http://dx.doi.org/10.1137/040612038
32.
32.P. Yu, Q. Du, and C. Liu, Multiscale Model. Simul. 3, 895 (2005).
http://dx.doi.org/10.1137/030602794
33.
33.L. L. Lee, Molecular Thermodynamics of Nonideal Fluids (Butterworth-Heinemann, New York, 1988).
34.
34.K. S. Pitzer, Thermodynamics, 3rd ed. (McGraw-Hill, New York, 1995).
35.
35.J. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions: Modern Aspects (Springer, New York, 1998).
36.
36.S. Durand-Vidal, J. -P. Simonin, and P. Turq, Electrolytes at Interfaces (Kluwer, Boston, 2000).
37.
37.W. R. Fawcett, Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details (Oxford University Press, New York, 2004).
38.
38.L. L. Lee, Molecular Thermodynamics of Electrolyte Solutions (World Scientific Singapore, 2008).
39.
39.A. Warshel and S. T. Russell, Q. Rev. Biophys. 17, 283 (1984).
http://dx.doi.org/10.1017/S0033583500005333
40.
40.M. K. Gilson and B. Honig, Biopolymers 25, 2097 (2004);
http://dx.doi.org/10.1002/bip.360251106
40.B. Roux, in Computational Biophysics, edited by O. Becker, A. D. MacKerrel, B. Roux, and M. Watanabe (Marcel Dekker, New York, 2001), Chap. 7, pp. 133155;
40.J. E. Nielsen and J. A. McCammon, Protein Sci. 12, 1894 (2003);
http://dx.doi.org/10.1110/ps.03114903
40.J. Dzubiella, J. M. Swanson, and J. A. McCammon, Phys. Rev. Lett. 96, 087802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.087802
41.
41.M. E. Davis and J. A. McCammon, Chem. Rev. (Washington, D.C.) 90, 509 (1990);
http://dx.doi.org/10.1021/cr00101a005
41.J. Antosiewicz, J. A. McCammon, and M. K. Gilson, Biochemistry 35, 7819 (1996).
http://dx.doi.org/10.1021/bi9601565
42.
42.W. Van Roosbroeck, Bell Syst. Tech. J. 29, 560 (1950).
43.
43.S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, New York, 1984).
44.
44.J. W. Jerome, Analysis of Charge Transport. Mathematical Theory and Approximation of Semiconductor Models (Springer-Verlag, New York, 1995).
45.
45.R. Eisenberg and D. Chen, Biophys. J. 64, A22 (1993).
46.
46.R. S. Eisenberg, J. Membr. Biol. 150, 1 (1996).
http://dx.doi.org/10.1007/s002329900026
47.
47.R. S. Eisenberg, in New Developments and Theoretical Studies of Proteins, edited by R. Elber (World Scientific, Philadelphia, 1996), Vol. 7, p. 269.
48.
48.M. Z. Bazant, K. Thornton, and A. Ajdari, Phys. Rev. E 70, 021506 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.021506
49.
49.R. Roth and D. Gillespie, Phys. Rev. Lett. 95, 247801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.247801
50.
50.H. Miedema, M. Vrouenraets, J. Wierenga, B. Eisenberg, D. Gillespie, W. Meijberg, and W. Nonner, Biophys. J. 91, 4392 (2006).
http://dx.doi.org/10.1529/biophysj.106.087114
51.
51.D. Gillespie, Biophys. J. 94, 1169 (2008).
http://dx.doi.org/10.1529/biophysj.107.116798
52.
52.J. P. Bardhan, R. S. Eisenberg, and D. Gillespie, Phys. Rev. E 80, 011906 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.011906
53.
53.M. Lundstrom, Fundamentals of Carrier Transport, 2nd ed. (Addison-Wesley, New York, 2000).
http://dx.doi.org/10.1017/CBO9780511618611
54.
54.T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas (Cambridge University Press, New York, 2003);
http://dx.doi.org/10.1017/CBO9780511755750
54.R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics (Institute of Physics, London, 1995);
54.C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (Institute of Physics, London, 1991).
http://dx.doi.org/10.1887/0750301171
55.
55.M. Burger, R. S. Eisenberg, and H. Engl, SIAM J. Appl. Math. 67, 960 (2007).
http://dx.doi.org/10.1137/060664689
56.
56.B. Eisenberg, Phys. Today 59(4), 12 (2006).
57.
57.T. A. van der Straaten, J. Tang, R. S. Eisenberg, U. Ravaioli, and N. R. Aluru, J. Comput. Electron. 1, 335 (2002);
http://dx.doi.org/10.1023/A:1020787222235
57.U. Hollerbach, D. P. Chen, D. D. Busath, and B. Eisenberg, Langmuir 16, 5509 (2000);
http://dx.doi.org/10.1021/la991525b
57.B. Eisenberg, “Permeation as a diffusion process,” http://www.biophysics.org/btol/channel.html#5, 2000;
57.U. Hollerbach, D. Chen, W. Nonner, and B. Eisenberg, Biophys. J. 76, A205 (1999);
57.D. Chen, R. Eisenberg, J. Jerome, and C. Shu, Biophys. J. 69, 2304 (1995);
http://dx.doi.org/10.1016/S0006-3495(95)80101-3
57.V. Barcilon, D. P. Chen, and R. S. Eisenberg, SIAM J. Appl. Math. 52, 1405 (1992);
http://dx.doi.org/10.1137/0152081
57.P. Graf, A. Nitzan, M. G. Kurnikova, and R. D. Coalson, J. Phys. Chem. B 104, 12324 (2000);
http://dx.doi.org/10.1021/jp001282s
57.A. E. Cardenas, R. D. Coalson, and M. G. Kurnikova, Biophys. J. 79, 80 (2000);
http://dx.doi.org/10.1016/S0006-3495(00)76275-8
57.M. G. Kurnikova, R. D. Coalson, P. Graf, and A. Nitzan, Biophys. J. 76, 642 (1999);
http://dx.doi.org/10.1016/S0006-3495(99)77232-2
57.B. Corry, S. Kuyucak, and S. H. Chung, J. Gen. Physiol. 114, 597 (1999);
http://dx.doi.org/10.1085/jgp.114.4.597
57.B. Corry, S. Kuyucak, and S. H. Chung,Biophys. J. 78, 2364 (2000);
http://dx.doi.org/10.1016/S0006-3495(00)76781-6
57.G. Moy, B. Corry, S. Kuyucak, and S. H. Chung, Biophys. J. 78, 2349 (2000);
http://dx.doi.org/10.1016/S0006-3495(00)76780-4
57.B. Corry, S. Kuyucak, and S. H. Chung, Biophys. J. 84, 3594 (2003);
http://dx.doi.org/10.1016/S0006-3495(03)75091-7
57.W. Im and B. Roux, J. Mol. Biol. 319, 1177 (2002);
http://dx.doi.org/10.1016/S0022-2836(02)00380-7
57.W. Im and B. Roux, J. Mol. Biol.322, 851 (2002).
http://dx.doi.org/10.1016/S0022-2836(02)00778-7
58.
58.D. Gillespie, W. Nonner, and R. S. Eisenberg, J. Phys.: Condens. Matter 14, 12129 (2002).
http://dx.doi.org/10.1088/0953-8984/14/46/317
59.
59.Z. Schuss, B. Nadler, and R. S. Eisenberg, Phys. Rev. E 64, 036116 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.036116
60.
60.W. Nonner, D. P. Chen, and B. Eisenberg, J. Gen. Physiol. 113, 773 (1999).
http://dx.doi.org/10.1085/jgp.113.6.773
61.
61.R. S. Eisenberg, J. Membr. Biol. 171, 1 (1999).
http://dx.doi.org/10.1007/s002329900554
62.
62.D. P. Chen and R. S. Eisenberg, Biophys. J. 64, 1405 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81507-8
63.
63.A. B. Mamonov, R. D. Coalson, A. Nitzan, and M. G. Kurnikova, Biophys. J. 84, 3646 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)75095-4
64.
64.J. Newman and K. E. Thomas-Alyea, Electrochemical Systems, 3rd ed. (Wiley-Interscience, New York, 2004).
65.
65.H. T. Davis, Statistical Mechanics of Phases, Interfaces, and Thin Films (Wiley-VCH, New York, 1996).
66.
66.R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Matter 14, 12063 (2002).
http://dx.doi.org/10.1088/0953-8984/14/46/313
67.
67.D. Gillespie, W. Nonner, and R. S. Eisenberg, Phys. Rev. E 68, 031503 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.031503
68.
68.D. Gillespie, M. Valisko, and D. Boda, J. Phys.: Condens. Matter 17, 6609 (2005).
http://dx.doi.org/10.1088/0953-8984/17/42/002
69.
69.J. -N. Chazalviel, Coulomb Screening by Mobile Charges (Birkhäuser, New York, 1999).
70.
70.K. S. Pitzer, Activity Coefficients in Electrolyte Solutions (CRC, Boca Raton, FL, 1991).
71.
71.J. S. Rowlinson, The Perfect Gas (Macmillan, New York, 1963).
72.
72.J. R. Henderson, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Marcel Dekker, New York, 1992), p. 23;
72.P. A. Martin, Rev. Mod. Phys. 60, 1075 (1988).
http://dx.doi.org/10.1103/RevModPhys.60.1075
73.
73.E. R. Cohen, T. Cvitas, J. Frey, B. Holmstrom, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H. L. Strauss, M. Takami, and A. J. Thor, Quantities, Units and Symbols in Physical Chemistry, 3rd ed. (Royal Society of Chemistry, Cambridge, UK, 2007).
74.
74.J. A. Heras, Am. J. Phys. 75, 652 (2007);
http://dx.doi.org/10.1119/1.2739570
74.J. A. Heras, Am. J. Phys.76, 101 (2008).
http://dx.doi.org/10.1119/1.2826656
75.
75.P. D. Yoder, K. Gärtner, and W. Fichtner, J. Appl. Phys. 79, 1951 (1996);
http://dx.doi.org/10.1063/1.361074
75.W. Nonner, A. Peyser, D. Gillespie, and B. Eisenberg, Biophys. J. 87, 3716 (2004).
http://dx.doi.org/10.1529/biophysj.104.047548
76.
76.J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, 2nd ed. (Wiley, New York, 2002).
77.
77.A. Singer, D. Gillespie, J. Norbury, and R. S. Eisenberg, Eur. J. Appl. Math. 19, 541 (2008).
http://dx.doi.org/10.1017/S0956792508007596
78.
78.D. E. Kirk, Optimal Control Theory (Dover, New York, 1998);
78.R. F. Stengel, Optimal Control and Estimation (Dover, New York, 1994).
79.
79.R. T. Jacobsen, S. G. Penoncello, E. W. Lemmon, and R. Span, in Equations of State for Fluids and Fluid Mixtures, edited by J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White, Jr. (Elsevier, New York, 2000), p. 849.
http://dx.doi.org/10.1016/S1874-5644(00)80008-9
80.
80.Y. Lin, K. Thomen, and J. -C. d. Hemptinne, AIChE J. 53, 989 (2007).
http://dx.doi.org/10.1002/aic.11128
81.
81.J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White, Jr., Equations of State for Fluids and Fluid Mixtures (Experimental Thermodynamics) (Elsevier, New York, 2000).
82.
82.J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, New York, 1940).
83.
83.J. Barthel, R. Buchner, and M. Münsterer, Electrolyte Data Collection: Dielectric Properties of Water and Aqueous Electrolyte Solutions (DECHEMA, Frankfurt am Main, 1995), Vol. 12, Pt. 2.
84.
84.A. Chhih, O. Bernard, J. M. G. Barthel, and L. Blum, Ber. Bunsenges. Phys. Chem. 98, 1516 (1994).
85.
85.H. L. Friedman, Ionic Solution Theory (Interscience, New York, 1962);
85.H. L. Friedman, A Course in Statistical Mechanics (Prentice Hall, Englewood Cliffs, NJ, 1985);
85.H. L. Friedman and W. D. T. Dale, in Statistical Mechanics, Part A: Equilibrium Techniques, edited by B. J. Berne (Plenum, New York, 1977), Vol. 1, p. 85.
86.
86.J. -P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 1986);
86.J. Dzubiella and J. P. Hansen, J. Chem. Phys. 121, 5514 (2004).
http://dx.doi.org/10.1063/1.1783274
87.
87.J. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976);
http://dx.doi.org/10.1103/RevModPhys.48.587
87.L. Blum and D. Henderson, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Marcel Dekker, New York, 1992), p. 606.
88.
88.D. Henderson, arXiv:0904.0991.
89.
89.K. M. Dyer, B. M. Pettitt, and G. Stell, J. Chem. Phys. 126, 034502 (2007);
http://dx.doi.org/10.1063/1.2424714
89.D. Ben-Amotz, F. O. Raineri, and G. Stell, J. Phys. Chem. B 109, 6866 (2005);
http://dx.doi.org/10.1021/jp045090z
89.G. Stell, Phys. Rev. A 45, 7628 (1992);
http://dx.doi.org/10.1103/PhysRevA.45.7628
89.G. Stell and C. G. Joslin, Biophys. J. 50, 855 (1986);
http://dx.doi.org/10.1016/S0006-3495(86)83526-3
89.J. -P. Simonin, J. Phys. Chem. B 101, 4313 (1997);
http://dx.doi.org/10.1021/jp970102k
89.J. -P. Simonin, O. Bernard, and L. Blum, J. Phys. Chem. B 103, 699 (1999);
http://dx.doi.org/10.1021/jp9833000
89.J. -P. Simonin and L. Blum, J. Chem. Soc., Faraday Trans. 92, 1533 (1996);
http://dx.doi.org/10.1039/ft9969201533
89.J. -P. Simonin, L. Blum, and P. Turq, J. Phys. Chem. 100, 7704 (1996);
http://dx.doi.org/10.1021/jp953567o
89.Y. K. Kalyuzhnyi, L. Blum, J. Reiscic, and G. Stell, J. Chem. Phys. 113, 1135 (2000).
http://dx.doi.org/10.1063/1.481892
90.
90.S. Durand-Vidal, P. Turq, O. Bernard, C. Treiner, and L. Blum, Physica A 231, 123 (1996).
http://dx.doi.org/10.1016/0378-4371(96)00083-0
91.
91.J. -P. Simonin, O. Bernard, and L. Blum, J. Phys. Chem. B 102, 4411 (1998).
http://dx.doi.org/10.1021/jp9732423
92.
92.H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd ed. (Reinhold, New York, 1958).
93.
93.S. R. DeGroot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962);
93.A. Katchalsky and P. F. Curran, Nonequilibrium Thermodynamics (Harvard University, Cambridge, MA, 1965).
94.
94.S. R. DeGroot, Thermodynamics of Irreversible Processes (North-Holland, Amsterdam, 1961);
94.I. Prigogine, Introduction to the Thermodynamics of Irreversible Processes, 2nd ed. (Interscience, New York, 1961);
94.K. G. Denbigh, Thermodynamics of the Steady State (Methuen, London, 1951).
95.
95.B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comput. Chem. 4, 187 (1983);
http://dx.doi.org/10.1002/jcc.540040211
95.F. A. Momany and R. Rone, J. Comput. Chem. 13, 888 (1992).
http://dx.doi.org/10.1002/jcc.540130714
96.
96.C. Zhang, S. Raugei, B. Eisenberg, and P. Carloni, J. Chem. Theory Comput. 6, 2167 (2010).
http://dx.doi.org/10.1021/ct9006579
97.
97.J. L. Lebowitz, Phys. Rev. 133, A895 (1964).
http://dx.doi.org/10.1103/PhysRev.133.A895
98.
98.J. P. Valleau and L. K. Cohen, J. Chem. Phys. 72, 5935 (1980).
http://dx.doi.org/10.1063/1.439092
99.
99.Z. Abbas, E. Ahlberg, and S. Nordholm, J. Phys. Chem. B 113, 5905 (2009).
http://dx.doi.org/10.1021/jp808427f
100.
100.G. M. Roger, S. Durand-Vidal, O. Bernard, and P. Turq, J. Phys. Chem. B 113, 8670 (2009).
http://dx.doi.org/10.1021/jp901916r
101.
101.J.-F. Dufrêche, M. Jardat, P. Turq, and B. Bagchi, J. Phys. Chem. B 112, 10264 (2008);
http://dx.doi.org/10.1021/jp801796g
101.J.-C. Justice, in Comprehensive Treatise of Electrochemistry, edited by B. E. Conway, J. O. M. Bockris, and E. Yaeger (Plenum, New York, 1983), Vol. 5, p. 223.
102.
102.J. -F. Dufrêche, O. Bernard, S. Durand-Vidal, and P. Turq, J. Phys. Chem. B 109, 9873 (2005);
http://dx.doi.org/10.1021/jp050387y
102.J. -F. Dufrêche, O. Bernard, P. Turq, A. Mukherjee, and B. Bagchi, Phys. Rev. Lett. 88, 095902 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.095902
103.
103.H. J. V. Tyrrell and K. R. Harris, Diffusion in Liquids (Butterworths, Boston, 1984).
104.
104.R. Taylor and R. Krishna, Multicomponent Mass Transfer (Wiley, New York, 1993).
105.
105.J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids (John Wiley & Sons, New York, 1964).
106.
106.H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, Dordrecht, 2000);
106.J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems (Springer, New York, 2005).
107.
107.T. Hastie, R. Tibshiramni, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, New York, 2001);
107.H. W. Sorenson, Parameter Estimation. Principles and Problems (Marcel Dekker, New York, 1980).
108.
108.C. Liu and J. Shen, Physica D 179, 211 (2003).
http://dx.doi.org/10.1016/S0167-2789(03)00030-7
109.
109.W. Nonner and B. Eisenberg, Biophys. J. 75, 1287 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)74048-2
110.
110.W. Nonner, D. Gillespie, D. Henderson, and B. Eisenberg, J. Phys. Chem. B 105, 6427 (2001).
http://dx.doi.org/10.1021/jp010562k
111.
111.S. Aboud, D. Marreiro, M. Saraniti, and R. Eisenberg, J. Comput. Electron. 3, 117 (2004).
http://dx.doi.org/10.1007/s10825-004-0316-8
112.
112.D. Boda, W. Nonner, D. Henderson, B. Eisenberg, and D. Gillespie, Biophys. J. 94, 3486 (2008).
http://dx.doi.org/10.1529/biophysj.107.122796
113.
113.H. Miedema, A. Meter-Arkema, J. Wierenga, J. Tang, B. Eisenberg, W. Nonner, H. Hektor, D. Gillespie, and W. Meijberg, Biophys. J. 87, 3137 (2004);
http://dx.doi.org/10.1529/biophysj.104.041384
113.M. Vrouenraets, J. Wierenga, W. Meijberg, and H. Miedema, Biophys. J. 90, 1202 (2006).
http://dx.doi.org/10.1529/biophysj.105.072298
114.
114.D. Gillespie and D. Boda, Biophys. J. 95, 2658 (2008).
http://dx.doi.org/10.1529/biophysj.107.127977
115.
115.G. Meissner, J. Biol. Chem. 261, 6300 (1986);
115.A. Tripathy and G. Meissner, Biophys. J. 70, 2600 (1996);
http://dx.doi.org/10.1016/S0006-3495(96)79831-4
115.Y. Wang, L. Xu, D. Pasek, D. Gillespie, and G. Meissner, Biophys. J. 89, 256 (2005);
http://dx.doi.org/10.1529/biophysj.104.056002
115.L. Xu, Y. Wang, D. Gillespie, and G. Meissner, Biophys. J. 90, 443 (2006).
http://dx.doi.org/10.1529/biophysj.105.072538
116.
116.L. Xu, Y. Wang, D. A. Pasek, and G. Meissner, Biophysical Society Abstract Presentation Number: 2392-Pos Poster Board Number: B503, 2005.
117.
117.B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, 3rd ed. (Garland, New York, 1994).
118.
118.W. Boron and E. Boulpaep, Medical Physiology (Saunders, New York, 2008).
119.
119.M. H. Jacobs, Diffusion Processes (Springer-Verlag, New York, 1967).
120.
120.B. Hille, Ionic Channels of Excitable Membranes, 3rd ed. (Sinauer Associates, Sunderland, 2001).
121.
121.E. K. Hoffmann, I. H. Lambert, and S. F. Pedersen, Physiol. Rev. 89, 193 (2009).
http://dx.doi.org/10.1152/physrev.00037.2007
122.
122.L. J. Henderson, The Fitness of the Environment: An Inquiry Into the Biological Significance of the Properties of Matter (Macmillan, New York, 1913);
122.K. Linderstrom-Lang, C R. Trav Lab Carlsberg 15, 1 (1924);
122.L. J. Henderson, Blood. A Study in General Physiology (Yale University Press, New Haven, CT, 1928);
122.E. J. Cohen and J. Edsall, Proteins, Amino Acids, and Peptides (Reinhold, New York, 1943);
122.C. Tanford, Physical Chemistry of Macromolecules (Wiley, New York, 1961);
122.C. Tanford and J. Reynolds, Nature’s Robots: A History of Proteins (Oxford University, New York, 2001).
123.
123.J. Edsall and J. Wyman, Biophysical Chemistry (Academic, New York, 1958).
124.
124.I. Klapper, R. Hagstrom, R. Fine, K. Sharp, and B. Honig, Proteins 1, 47 (1986);
http://dx.doi.org/10.1002/prot.340010109
124.B. Honig, K. Sharp, and M. Gilson, Prog. Clin. Biol. Res. 289, 65 (1989);
124.B. Honig and A. Nichols, Science 268, 1144 (1995);
http://dx.doi.org/10.1126/science.7761829
124.A. Warshel, J. Biol. Chem. 273, 27035 (1998).
http://dx.doi.org/10.1074/jbc.273.42.27035
125.
125.E. C. Conley, The Ion Channel Facts Book. I. Extracellular Ligand-Gated Channels (Academic, New York, 1996);
125.E. C. Conley, The Ion Channel Facts Book. II. Intracellular Ligand-Gated Channels (Academic, New York, 1996);
125.E. C. Conley and W. J. Brammar, The Ion Channel Facts Book IV: Voltage Gated Channels (Academic, New York, 1999);
125.E. C. Conley and W. J. Brammar, The Ion Channel Facts Book III: Inward Rectifier and Intercellular Channels (Academic, New York, 2000).
126.
126.A. G. Gilman, Biosci Rep. 15, 65 (1995);
http://dx.doi.org/10.1007/BF01200143
126.A. M. Hofer and K. Lefkimmiatis, Physiology 22, 320 (2007);
http://dx.doi.org/10.1152/physiol.00019.2007
126.S. N. Orlov and P. Hamet, J. Membr. Biol. 210, 161 (2006).
http://dx.doi.org/10.1007/s00232-006-0857-9
127.
127.B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, and K. Roberts, Essential Cell Biology, 3rd ed. (Garland, New York, 1998).
128.
128.P. C. Caldwell, A. L. Hodgkin, R. D. Keynes, and T. I. Shaw, J. Physiol. (London) 152, 561 (1960);
128.A. L. Hodgkin and R. D. Keynes, J. Physiol. (London) 128, 28 (1955);
128.B. Hille, in Textbook of Physiology, edited by H. D. Patton, A. F. Fuchs, B. Hille, A. M. Scher, and R. D. Steiner (Saunders, Philadelphia, 1989), Vol. 1, p. 24;
128.E. Carafoli, Physiol. Rev. 71, 129 (1991);
128.Molecular Biology of Receptors and Transporters: Pumps, Transporters and Channels, edited by M. Friedlander, M. Mueckler, and K. W. Jeon (Academic, New York, 2006);
128.M. Brini and E. Carafoli, Physiol. Rev. 89, 1341 (2009);
http://dx.doi.org/10.1152/physrev.00032.2008
128.N. A. Colabufo, F. Berardi, M. Contino, M. Niso, and R. Perrone, Curr. Top. Med. Chem. 9, 119 (2009).
http://dx.doi.org/10.2174/156802609787521553
129.
129.W. Nonner, D. P. Chen, and B. Eisenberg, Biophys. J. 74, 2327 (1998);
http://dx.doi.org/10.1016/S0006-3495(98)77942-1
129.D. Gillespie, D. Boda, Y. He, P. Apel, and Z. S. Siwy, Biophys. J. 95, 609 (2008).
http://dx.doi.org/10.1529/biophysj.107.127985
130.
130.W. Nonner and B. Eisenberg, J. Mol. Liq. 87, 149 (2000);
http://dx.doi.org/10.1016/S0167-7322(00)00118-5
130.D. Boda, D. Henderson, and D. D. Busath, J. Phys. Chem. B 105, 11574 (2001);
http://dx.doi.org/10.1021/jp003556h
130.D. Gillespie and R. S. Eisenberg, Phys. Rev. E 63, 061902 (2001);
http://dx.doi.org/10.1103/PhysRevE.63.061902
130.D. Boda, D. Busath, B. Eisenberg, D. Henderson, and W. Nonner, Phys. Chem. Chem. Phys. 4, 5154 (2002);
http://dx.doi.org/10.1039/b203686j
130.D. Boda, D. Henderson, and D. Busath, Mol. Phys. 100, 2361 (2002);
http://dx.doi.org/10.1080/00268970210125304
130.D. Gillespie, W. Nonner, D. Henderson, and R. S. Eisenberg, Phys. Chem. Chem. Phys. 4, 4763 (2002);
http://dx.doi.org/10.1039/b203184a
130.D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg, Phys. Rev. E 69, 046702 (2004);
http://dx.doi.org/10.1103/PhysRevE.69.046702
130.D. Boda, T. Varga, D. Henderson, D. Busath, W. Nonner, D. Gillespie, and B. Eisenberg, Mol. Simul. 30, 89 (2004);
http://dx.doi.org/10.1080/0892702031000152226
130.D. Boda, M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie, J. Chem. Phys. 125, 034901 (2006);
http://dx.doi.org/10.1063/1.2212423
130.A. Malasics, D. Gillespie, and D. Boda, J. Chem. Phys. 128, 124102 (2008).
http://dx.doi.org/10.1063/1.2839302
131.
131.D. Gillespie, L. Xu, Y. Wang, and G. Meissner, J. Phys. Chem. 109, 15598 (2005).
http://dx.doi.org/10.1021/jp052471j
132.
132.M. Valisko, D. Boda, and D. Gillespie, J. Phys. Chem. C 111, 15575 (2007).
http://dx.doi.org/10.1021/jp073703c
133.
133.Y. He, D. Gillespie, D. Boda, I. Vlassiouk, R. S. Eisenberg, and Z. S. Siwy, J. Am. Chem. Soc. 131, 5194 (2009).
http://dx.doi.org/10.1021/ja808717u
134.
134.J. Barker and D. Henderson, Mol. Phys. 21, 187 (1971).
http://dx.doi.org/10.1080/00268977100101331
135.
135.D. Boda, D. Henderson, and K. -Y. Chan, J. Chem. Phys. 110, 5346 (1999).
http://dx.doi.org/10.1063/1.478429
136.
136.D. Gillespie and M. Fill, Biophys. J. 95, 3706 (2008);
http://dx.doi.org/10.1529/biophysj.108.131987
136.D. Henderson, P. Bryk, S. Sokolowski, and D. T. Wasan, Phys. Rev. E 61, 3896 (2000);
http://dx.doi.org/10.1103/PhysRevE.61.3896
136.D. Boda, D. Henderson, A. Patrykiejew, and S. Sokolowski, J. Colloid Interface Sci. 239, 432 (2001).
http://dx.doi.org/10.1006/jcis.2001.7560
137.
137.H. Hansen-Goos and R. Roth, J. Phys.: Condens. Matter 18, 8413 (2006).
http://dx.doi.org/10.1088/0953-8984/18/37/002
138.
138.P. -M. König, R. Roth, and K. R. Mecke, Phys. Rev. Lett. 93, 160601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.160601
139.
139.Y. Rosenfeld, in Chemical Applications of Density-Functional Theory, edited by B. B. Laird, R. B. Ross, and T. Ziegler (American Chemical Society, Washington, DC, 1996), Vol. 629, p. 198;
http://dx.doi.org/10.1021/bk-1996-0629.ch014
139.R. Roth, M. Rauscher, and A. J. Archer, Phys. Rev. E 80, 021409 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.021409
140.
140.R. Evans, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Marcel Dekker, New York, 1992), p. 606.
141.
141.Y. Rosenfeld, Phys. Rev. A 37, 3403 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.3403
142.
142.Y. Rosenfeld, M. Schmidt, H. Lοwen, and P. Tarazona, Phys. Rev. E 55, 4245 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.4245
143.
143.P. T. Ellinor, J. Yang, W. A. Sather, J. -F. Zhang, and R. Tsien, Neuron 15, 1121 (1995);
http://dx.doi.org/10.1016/0896-6273(95)90100-0
143.S. H. Heinemann, H. Terlau, W. Stuhmer, K. Imoto, and S. Numa, Nature (London) 356, 441 (1992);
http://dx.doi.org/10.1038/356441a0
143.J. Yang, P. T. Ellinor, W. A. Sather, J. F. Zhang, and R. Tsien, Nature (London) 366, 158 (1993).
http://dx.doi.org/10.1038/366158a0
144.
144.W. A. Sather and E. W. McCleskey, Annu. Rev. Physiol. 65, 133 (2003).
http://dx.doi.org/10.1146/annurev.physiol.65.092101.142345
145.
145.H. Pearson, Nature (London) 455, 160 (2008).
http://dx.doi.org/10.1038/455160a
146.
146.A. J. Brizard, Phys. Plasmas 7, 4816 (2000);
http://dx.doi.org/10.1063/1.1322063
146.H. Cendra, D. D. Holm, M. J. W. Hoyle, and J. E. Marsden, J. Math. Phys. 39, 3138 (1998);
http://dx.doi.org/10.1063/1.532244
146.F. E. Low, Proc. R. Soc. London, Ser. A 248, 282 (1958);
http://dx.doi.org/10.1098/rspa.1958.0244
146.P. J. Morrison and D. Pfirsch, Phys. Rev. A 40, 3898 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.3898
147.
147.J. Zhu, E. Alexov, and B. Honig, J. Phys. Chem. B 109, 3008 (2005);
http://dx.doi.org/10.1021/jp046307s
147.F. Fogolari and J. M. Briggsa, Chem. Phys. Lett. 281, 135 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)01193-7
148.
148.V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics (Springer, New York, 1999);
148.R. K. P. Zia, E. F. Redish, and S. R. McKay, Am. J. Phys. 77, 614 (2009).
http://dx.doi.org/10.1119/1.3119512
149.
149.R. Courant, Courant-Hilbert Methods of Mathematical Physics (Interscience, New York, 1966), Vol. 2.
150.
150.R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, New York, 1953), Vol. 1.
151.
151.R. Abraham and J. E. Marsden, Foundations of Mechanics (Addison-Wesley, Reading, MA, 1985).
152.
152.V. Barcilon, D. Chen, R. S. Eisenberg, and M. Ratner, J. Chem. Phys. 98, 1193 (1993).
http://dx.doi.org/10.1063/1.464342
153.
153.R. S. Eisenberg, M. M. Klosek, and Z. Schuss, J. Chem. Phys. 102, 1767 (1995).
http://dx.doi.org/10.1063/1.468704
154.
154.S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
http://dx.doi.org/10.1103/RevModPhys.15.1
155.
155.R. Balescu, Statistical Dynamics: Matter Out of Equilibrium (World Scientific, Singapore, 1997).
156.
156.Z. Schuss, B. Nadler, A. Singer, and R. Eisenberg, Unsolved Problems of Noise and Fluctuations, UPoN 2002, Third International Conference on Unsolved Problems of Noise and Fluctuations in Physics, Biology, and High Technology, Washington, DC, presented at the AIP Conference Proceedings, 3–6 September 2002, 2002;
156.B. Nadler, Z. Schuss, A. Singer, and B. Eisenberg, Nanotechnology 3, 439 (2003);
156.B. Nadler, Z. Schuss, A. Singer, and R. Eisenberg, J. Phys.: Condens. Matter 16, S2153 (2004);
http://dx.doi.org/10.1088/0953-8984/16/22/015
156.A. Singer, Z. Schuss, B. Nadler, and R. S. Eisenberg, Phys. Rev. E 70, 061106 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.061106
157.
157.A. Singer, Z. Schuss, B. Nadler, and R. S. Eisenberg, Proc. SPIE 5467, 345 (2004).
http://dx.doi.org/10.1117/12.548257
158.
158.S. A. Rice and P. Gray, Statistical Mechanics of Simple Fluids (Interscience, New York, 1965).
159.
159.A. Einstein, Investigations on the Theory of the Brownian Movement (Dover, New York, 1956).
160.
160.A. L. Hodgkin, Proc. R. Soc. London, Ser. B 148, 1 (1958).
http://dx.doi.org/10.1098/rspb.1958.0001
161.
161.T. J. Chung, General Continuum Mechanics, 2nd ed. (Cambridge University Press, New York, 2007).
162.
162.J. A. Myers, S. I. Sandler, and R. H. Wood, Ind. Eng. Chem. Res. 41, 3282 (2002).
http://dx.doi.org/10.1021/ie011016g
163.
163.I. Rubinstein, Electro-Diffusion of Ions (SIAM, Philadelphia, 1990).
164.
164.S. M. Saparov and P. Pohl, Proc. Natl. Acad. Sci. U.S.A. 101, 4805 (2004).
http://dx.doi.org/10.1073/pnas.0308309101
165.
165.H. Lamb, Hydrodynamics, 6th ed. (Dover, New York, 1932);
165.D. P. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987).
166.
166.A. Singer, Z. Schuss, and R. S. Eisenberg, J. Stat. Phys. 119, 1397 (2005).
http://dx.doi.org/10.1007/s10955-005-3025-1
167.
167.R. J. Ryham, Ph.D. thesis, The Pennsylvania State University, 2006.
168.
168.R. J. Ryham, arXiv:0810.2064v1.
169.
169.F. -H. Lin, C. Liu, and P. Zhang, Commun. Pure Appl. Math. 60, 838 (2007).
http://dx.doi.org/10.1002/cpa.20159
170.
170.Nonlinear Conservation Laws, Fluid Systems and Related Topics, edited by G. -Q. Chen, T. -T. Li, and C. Liu (World Scientific, Singapore, 2009);
170.Multi-Scale Phenomena in Complex Fluids: Modeling, Analysis and Numerical Simulations, edited by T. Y. Hou, C. Liu, and J. -G. Liu (World Scientific, Singapore, 2009).
171.
171.Y. Hyon, D. Y. Kwak, and C. Liu, “Energetic variational approach in complex fluids: Maximum dissipation principle,” available at http://www.ima.umn.edu as IMA preprint series 2228, 2009.
172.
172.Q. Wang, W. E, and P. Wang, Phys. Rev. E 65, 051504 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.051504
173.
173.J. A. Carrillo, Q. Du, and Y. Hyon, Kinetic and Related Models 1, 171 (2008);
173.C. Liu and H. Liu, SIAM J. Appl. Math. 68, 1304 (2008).
http://dx.doi.org/10.1137/060667700
174.
174.E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics Part 2 (Butterworth Heinemann, Boston, 1991).
175.
175.J. B. Keller, Am. Math. Monthly 83, 107 (1976).
http://dx.doi.org/10.2307/2976988
176.
176.E. Mason and E. McDaniel, Transport Properties of Ions in Gases (John Wiley and Sons, New York, 1988).
http://dx.doi.org/10.1002/3527602852
177.
177.B. Eisenberg, arxiv.org/q-bio.BM;
177.B. Eisenberg, arxiv.org/q-bio/0506016v2.
178.
178.P. H. Barry, J. Neurosci. Methods 51, 107 (1994).
http://dx.doi.org/10.1016/0165-0270(94)90031-0
179.
179.H. Kim, H. S. Min, T. W. Tang, and Y. J. Park, Solid-State Electron. 34, 1251 (1991);
http://dx.doi.org/10.1016/0038-1101(91)90065-7
179.S. Ramo, Proc. RE. 27, 584 (1939);
179.W. Shockley, J. Appl. Phys. 9, 635 (1938).
http://dx.doi.org/10.1063/1.1710367
180.
180.H. K. Gummel, IEEE Trans. Electron Devices ED-11, 445 (1964).
181.
181.C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer-Verlag, New York, 1989).
182.
182.B. Hille, J. Gen. Physiol. 66, 535 (1975).
http://dx.doi.org/10.1085/jgp.66.5.535
183.
183.A. L. Hodgkin, The Conduction of the Nervous Impulse (Liverpool University Press, Liverpool, 1971).
184.
184.A. L. Hodgkin, Chance and Design (Cambridge University Press, New York, 1992).
185.
185.D. Boda, M. Valisko, D. Henderson, D. Gillespie, B. Eisenberg, and M. K. Gilson, Biophys. J. 96, 1293 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.10.059
186.
186.I. Mills, Quantities, Units and Symbols in Physical Chemistry (Blackwell Scientific, Boston, 1988).
187.
187.Y. Rosenfeld, J. Chem. Phys. 98, 8126 (1993).
http://dx.doi.org/10.1063/1.464569
188.
188.A. L. Hodgkin and R. D. Keynes, J. Physiol. (London) 128, 61 (1955).
189.
189.R. F. Rakowski, Biophys. J. 55, 663 (1989);
http://dx.doi.org/10.1016/S0006-3495(89)82864-4
189.R. F. Rakowski, D. C. Gadsby, and P. De Weer, J. Gen. Physiol. 119, 235 (2002).
http://dx.doi.org/10.1085/jgp.119.3.235
190.
190.A. L. Hodgkin, Biol. Rev. Cambridge Philos. Soc. 26, 339 (1951);
http://dx.doi.org/10.1111/j.1469-185X.1951.tb01204.x
190.E. Hille and W. Schwartz, J. Gen. Physiol. 72, 409 (1978);
http://dx.doi.org/10.1085/jgp.72.4.409
190.L. Bass, A. Bracken, and J. Hilden, J. Theor. Biol. 118, 327 (1986);
http://dx.doi.org/10.1016/S0022-5193(86)80063-7
190.L. Bass and A. McNabb, J. Theor. Biol. 133, 185 (1988);
http://dx.doi.org/10.1016/S0022-5193(88)80004-3
190.A. McNabb and L. Bass, IMA J. Appl. Math. 43, 1 (1989);
http://dx.doi.org/10.1093/imamat/43.1.1
190.A. McNabb and L. Bass, IMA J. Appl. Math.44, 155 (1990).
http://dx.doi.org/10.1093/imamat/44.2.155
191.
191.R. M. Fuoss and L. Onsager, Proc. Natl. Acad. Sci. U.S.A. 41, 274 (1955);
http://dx.doi.org/10.1073/pnas.41.5.274
191.R. M. Fuoss and F. Accascina, Electrolytic Conductance (Interscience, New York, 1959);
191.R. M. Fuoss and L. Onsager, Proc. Natl. Acad. Sci. U.S.A. 47, 818 (1961).
http://dx.doi.org/10.1073/pnas.47.6.818
192.
192.A. B. Mamonov, M. G. Kurnikova, and R. D. Coalson, Biophys. Chem. 124, 268 (2006);
http://dx.doi.org/10.1016/j.bpc.2006.03.019
192.T. W. Allen, O. S. Andersen, and B. Roux, Proc. Natl. Acad. Sci. U.S.A. 101, 117 (2004);
http://dx.doi.org/10.1073/pnas.2635314100
192.T. W. Allen, O. S. Andersen, and B. Roux,J. Gen. Physiol. 124, 679 (2004);
http://dx.doi.org/10.1085/jgp.200409111
192.T. W. Allen, O. S. Andersen, and B. Roux,Biophys. J. 90, 3447 (2006).
http://dx.doi.org/10.1529/biophysj.105.077073
193.
193.S. Berry, S. Rice, and J. Ross, Physical Chemistry, 1st ed. (Wiley, New York, 1963).
194.
194.Y. Hyon, Q. Du, and C. Liu, J. Comput. Theor. Nanosci. 7, 756 (2010).
http://dx.doi.org/10.1166/jctn.2010.1418
195.
195.P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms (Springer Verlag, New York, 1986).
196.
196.J. Xu and L. Zikatanov, Math. Comput. 68, 1429 (1999).
http://dx.doi.org/10.1090/S0025-5718-99-01148-5
197.
197.D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron Devices 16, 64 (1969).
http://dx.doi.org/10.1109/T-ED.1969.16566
198.
198.R. E. Bank, D. J. Rose, and W. Fichtner, IEEE Trans. Electron Devices 30, 1031 (1983);
http://dx.doi.org/10.1109/T-ED.1983.21257
198.T. Kerkhoven, SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 9, 48 (1988).
http://dx.doi.org/10.1137/0909005
199.
199.B. Jönsson, A. Nonat, C. Labbez, B. Cabane, and H. Wennerström, Langmuir 21, 9211 (2005).
http://dx.doi.org/10.1021/la051048z
200.
200.J. J. Howard, J. S. Perkyns, and B. M. Pettitt, J. Phys. Chem. B 114, 6074 (2010).
http://dx.doi.org/10.1021/jp9108865
201.
201.E. Wernersson, R. Kjellander, and J. Lyklema, J. Phys. Chem. C 114, 1849 (2010);
http://dx.doi.org/10.1021/jp906759e
201.D. Henderson, Prog. Surf. Sci. 13, 197 (1983).
http://dx.doi.org/10.1016/0079-6816(83)90004-7
202.
202.J. Fonseca, D. Boda, and B. Eisenberg, personal communication (2010).
203.
203.D. Gillespie, J. Phys. Chem. B 114, 4302 (2010).
http://dx.doi.org/10.1021/jp9121276
204.
204.R. Roth, J. Phys.: Condens. Matter 22, 063102 (2010).
http://dx.doi.org/10.1088/0953-8984/22/6/063102
205.
205.G. M. Torrie and J. P. Valleau, J. Chem. Phys. 73, 5807 (1980).
http://dx.doi.org/10.1063/1.440065
206.
206.B. V. Tata, D. Boda, D. Henderson, A. Nikolov, and D. T. Wasan, Phys. Rev. E 62, 3875 (2000);
http://dx.doi.org/10.1103/PhysRevE.62.3875
206.D. Boda, K. -Y. Chan, and D. Henderson, J. Chem. Phys. 109, 7362 (1998);
http://dx.doi.org/10.1063/1.477342
206.D. Henderson and D. Boda, Phys. Chem. Chem. Phys. 11, 3822 (2009).
http://dx.doi.org/10.1039/b815946g
207.
207.L. Harnau and S. Dietrich, Phys. Rev. E 66, 051702 (2002);
http://dx.doi.org/10.1103/PhysRevE.66.051702
207.L. Harnau and S. Dietrich, Phys. Rev. E65, 021505 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.021505
208.
208.R. Roth and S. Dietrich, Phys. Rev. E 62, 6926 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.6926
209.
209.B. Eisenberg, Institute of Mathematics and Its Applications (IMA), University of Minnesota, http://www.ima.umn.edu/2008, 2009.
210.
210.P. G. Kostyuk, O. A. Krishtal, V. I. Pidoplichko, and A. Shakhovalov Yu, J. Gen. Physiol. 73, 675 (1979);
http://dx.doi.org/10.1085/jgp.73.5.675
210.K. S. Lee and R. W. Tsien, J. Physiol. (London) 354, 253 (1984);
210.E. W. McCleskey and W. Almers, Proc. Natl. Acad. Sci. U.S.A. 82, 7149 (1985);
http://dx.doi.org/10.1073/pnas.82.20.7149
210.P. Kostyuk, N. Akaike, Y. Osipchuk, A. Savchenko, and Y. Shuba, Ann. N.Y. Acad. Sci. 560, 63 (1989);
http://dx.doi.org/10.1111/j.1749-6632.1989.tb24081.x
210.G. Ferreira, E. Ríos, and N. Reyes, Biophys. J. 84, 3662 (2003);
http://dx.doi.org/10.1016/S0006-3495(03)75096-6
210.A. Rodríguez-Contreras and E. N. Yamoah, Biophys. J. 84, 3457 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)70066-6
211.
211.B. Frankenhaeuser and A. L. Hodgkin, J. Physiol. (London) 131, 341 (1956).
212.
212.B. Sakmann and E. Neher, Single Channel Recording, 2nd ed. (Plenum, New York, 1995).
213.
213.A. F. Huxley, Biogr. Mem. Fellows R. Soc. 38, 98 (1992).
http://dx.doi.org/10.1098/rsbm.1992.0005
214.
214.A. L. Hodgkin and A. F. Huxley, J. Physiol. (London) 117, 500 (1952).
215.
215.W. N. Green and O. S. Andersen, Annu. Rev. Physiol. 53, 341 (1991);
http://dx.doi.org/10.1146/annurev.ph.53.030191.002013
215.W. N. Green, L. B. Weiss, and O. S. Andersen, J. Gen. Physiol. 89, 873 (1987);
http://dx.doi.org/10.1085/jgp.89.6.873
215.S. S. Garber and C. Miller, J. Gen. Physiol. 89, 459 (1987).
http://dx.doi.org/10.1085/jgp.89.3.459
216.
216.C. M. Armstrong and F. Bezanilla, Nature (London) 242, 459 (1973);
http://dx.doi.org/10.1038/242459a0
216.F. Bezanilla and E. Stefani, Methods Enzymol. 293, 331 (1998);
http://dx.doi.org/10.1016/S0076-6879(98)93022-1
216.F. Bezanilla, Physiol. Rev. 80, 555 (2000);
216.F. Bezanilla and E. Perozo, Adv. Protein Chem. 63, 211 (2003);
http://dx.doi.org/10.1016/S0065-3233(03)63009-3
216.F. Bezanilla, Nat. Rev. Mol. Cell Biol. 9, 323 (2008).
http://dx.doi.org/10.1038/nrm2376
217.
217.D. Sigg, F. Bezanilla, and E. Stefani, Proc. Natl. Acad. Sci. U.S.A. 100, 7611 (2003).
http://dx.doi.org/10.1073/pnas.1332409100
218.
218.A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. (John Wiley & Sons, New York, 2000);
218.S. R. Berry, S. A. Rice, and J. Ross, Physical Chemistry, 2nd ed. (Oxford University, New York, 2000);
218.W. Schmickler, Interfacial Electrochemistry (Oxford University Press, New York, 1996);
218.Z. Abbas, M. Gunnarsson, E. Ahlberg, and S. Nordholm, J. Phys. Chem. B 106, 1403 (2002);
http://dx.doi.org/10.1021/jp012054g
218.J. Che, J. Dzubiella, B. Li, and J. A. McCammon, J. Phys. Chem. B 112, 3058 (2008);
http://dx.doi.org/10.1021/jp7101012
218.I. S. Joung and T. E. Cheatham, J. Phys. Chem. B 113, 13279 (2009);
http://dx.doi.org/10.1021/jp902584c
218.I. Kalcher and J. Dzubiella, J. Chem. Phys. 130, 134507 (2009);
http://dx.doi.org/10.1063/1.3097530
218.L. Vrbka, M. Lund, I. Kalcher, J. Dzubiella, R. R. Netz, and W. Kunz, J. Chem. Phys. 131, 154109 (2009);
http://dx.doi.org/10.1063/1.3248218
218.M. Schmidt, J. Phys.: Condens. Matter 16, L351 (2004);
http://dx.doi.org/10.1088/0953-8984/16/30/L01
218.B. Rotenberg, A. Cadene, J. F. Dufreche, S. Durand-Vidal, J. C. Badot, and P. Turq, J. Phys. Chem. B 109, 15548 (2005);
http://dx.doi.org/10.1021/jp051586k
218.V. Dahirel, M. Jardat, J. F. Dufreche, and P. Turq, Phys. Rev. E 76, 040902 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.040902
219.
219.Chemical Applications of Density-Functional Theory, edited by B. B. Laird, R. B. Ross, and T. Ziegler (American Chemical Society, Washington, DC, 1996), Vol. 629.
220.
220.S. Zhou, J. Chem. Phys. 115, 2212 (2001).
http://dx.doi.org/10.1063/1.1383988
221.
221.M. Riordan and L. Hoddeson, Crystal Fire (Norton, New York, 1997);
221.J. N. Shurkin, Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age (Macmillan, New York, 2006);
221.N. F. Mott, Proc. Roy Soc A 171, 27 (1939).
http://dx.doi.org/10.1098/rspa.1939.0051
222.
222.J. L. Oncley, Chem. Rev. (Washington, D.C.) 30, 433 (1942);
http://dx.doi.org/10.1021/cr60097a008
222.J. L. Oncley,Biophys. Chem. 100, 151 (2003).
http://dx.doi.org/10.1016/S0301-4622(02)00276-4
223.
223.R. S. Eisenberg, J. Membr. Biol. 115, 1 (1990).
http://dx.doi.org/10.1007/BF01869101
224.
224.J. M. Berg, Annu. Rev. Biophys. Biophys. Chem. 19, 405 (1990);
http://dx.doi.org/10.1146/annurev.bb.19.060190.002201
224.Y. Shi and J. M. Berg, Chem. Biol. 2, 83 (1995);
http://dx.doi.org/10.1016/1074-5521(95)90280-5
224.C. B. Klee, T. H. Crouch, and P. G. Richman, Annu. Rev. Biochem. 49, 489 (1980);
http://dx.doi.org/10.1146/annurev.bi.49.070180.002421
224.Y. Saimi and C. Kung, Annu. Rev. Physiol. 64, 289 (2002);
http://dx.doi.org/10.1146/annurev.physiol.64.100301.111649
224.R. B. Best and G. Hummer, Science 323, 593 (2009);
http://dx.doi.org/10.1126/science.1169555
224.G. Meissner, D. A. Pasek, N. Yamaguchi, S. Ramachandran, N. V. Dokholyan, and A. Tripathy, Proteins 74, 207 (2009);
http://dx.doi.org/10.1002/prot.22148
224.M. T. Rodgers and P. B. Armentrout, Acc. Chem. Res. 37, 989 (2004);
http://dx.doi.org/10.1021/ar0302843
224.C. M. Wells and E. Di Cera, Biochemistry 31, 11721 (1992);
http://dx.doi.org/10.1021/bi00162a008
224.M. J. Page and E. Di Cera, Thromb. Haemostasis 95, 920 (2006);
224.E. Di Cera, J. Thromb. Haemost. 5, 196 (2007);
http://dx.doi.org/10.1111/j.1538-7836.2007.02485.x
224.E. Di Cera,Mol. Aspects Med. 29, 203 (2008).
http://dx.doi.org/10.1016/j.mam.2008.01.001
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/10/10.1063/1.3476262
Loading
/content/aip/journal/jcp/133/10/10.1063/1.3476262
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/10/10.1063/1.3476262
2010-09-09
2014-11-26

Abstract

Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton’s least action and Rayleigh’s dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an “extra layer” of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler–Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new component is added to the energy or dissipation, the Euler–Lagrange equations change form and interaction terms appear without additional adjustable parameters. EnVarA has previously been used to compute properties of liquid crystals, polymer fluids, and electrorheological fluids containing solid balls and charged oil droplets that fission and fuse. Here we apply EnVarA to the primitive model of electrolytes in which ions are spheres in a frictional dielectric. The resulting Euler–Lagrange equations include electrostatics and diffusion and friction. They are a time dependent generalization of the Poisson–Nernst–Planck equations of semiconductors, electrochemistry, and molecular biophysics. They include the finite diameter of ions. The EnVarA treatment is applied to ions next to a charged wall, where layering is observed. Applied to an ion channel,EnVarA calculates a quick transient pile-up of electric charge, transient and steady flow through the channel, stationary “binding” in the channel, and the eventual accumulation of salts in “unstirred layers” near channels. EnVarA treats electrolytes in a unified way as complex rather than simple fluids. Ad hoc descriptions of interactions and flow have been used in many areas of science to deal with the nonideal properties of electrolytes. It seems likely that the variational treatment can simplify, unify, and perhaps derive and improve those descriptions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/10/1.3476262.html;jsessionid=4bs7u5edlkp9.x-aip-live-02?itemId=/content/aip/journal/jcp/133/10/10.1063/1.3476262&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/10/10.1063/1.3476262
10.1063/1.3476262
SEARCH_EXPAND_ITEM