Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/10/10.1063/1.3480017
1.
1.M. E. Kellman, J. Chem. Phys. 93, 6630 (1990).
http://dx.doi.org/10.1063/1.458930
2.
2.M. E. Kellman and G. Chen, J. Chem. Phys. 95, 8671 (1991).
http://dx.doi.org/10.1063/1.461251
3.
3.L. E. Fried and G. S. Ezra, J. Chem. Phys. 86, 6270 (1987).
http://dx.doi.org/10.1063/1.452464
4.
4.S. A. B. Solina, J. P. O’Brien, R. W. Field, and W. F. Polik, Ber. Bunsenges. Phys. Chem. 99, 555 (1995).
5.
5.J. P. O’Brien, M. P. Jacobson, J. J. Sokol, S. L. Coy, and R. W. Field, J. Chem. Phys. 108, 7100 (1998).
http://dx.doi.org/10.1063/1.476127
6.
6.M. A. Temsamani and M. Herman, J. Chem. Phys. 102, 6371 (1995).
http://dx.doi.org/10.1063/1.469353
7.
7.A. Chakraborty and M. E. Kellman, J. Chem. Phys. 129, 171104 (2008).
http://dx.doi.org/10.1063/1.3013559
8.
8.J. A. Miller, M. J. Pilling, and J. Troe, Proc. Combust. Inst. 30, 43 (2005).
http://dx.doi.org/10.1016/j.proci.2004.08.281
9.
9.C. Xu, D. Xie, D. H. Zhang, S. Y. Lin, and H. Guo, J. Chem. Phys. 122, 244305 (2005).
http://dx.doi.org/10.1063/1.1944290
10.
10.C. Xu, B. Jian, D. Xie, S. C. Farantos, S. Y. Lin, and H. Guo, J. Phys. Chem. A 111, 10353 (2007).
http://dx.doi.org/10.1021/jp072319c
11.
11.L. Seidel, C. Gonzalez-Giralda, R. M. Benito, and F. Borondo, Int. J. Quantum Chem. 86, 175 (2002).
http://dx.doi.org/10.1002/qua.1621
12.
12.J. C. Light and Z. Bačić, J. Chem. Phys. 87, 4008 (1987).
http://dx.doi.org/10.1063/1.452904
13.
13.Z. Bačić and J. C. Light, J. Chem. Phys. 86, 3065 (1987).
http://dx.doi.org/10.1063/1.452017
14.
14.E. L. Sibert and R. C. Mayrhofer, J. Chem. Phys. 99, 937 (1993).
http://dx.doi.org/10.1063/1.465358
15.
15.G. L. Barnes, S. A. Squires, and E. L. Sibert, J. Phys. Chem. B 112, 595 (2008).
http://dx.doi.org/10.1021/jp075376e
16.
16.G. L. Barnes and E. L. Sibert, J. Chem. Phys. 129, 164317 (2008).
http://dx.doi.org/10.1063/1.3000102
17.
17.I. Matanović, N. Doslić, and O. Kühn, J. Chem. Phys. 127, 014309 (2007).
http://dx.doi.org/10.1063/1.2748048
18.
18.M. E. Kellman, J. Chem. Phys. 82, 3300 (1985).
http://dx.doi.org/10.1063/1.448945
19.
19.M. P. Jacobson and M. S. Child, J. Phys. Chem. A 105, 2834 (2001).
http://dx.doi.org/10.1021/jp0045080
20.
20.M. S. Child, M. P. Jacobson, and C. D. Cooper, J. Phys. Chem. A 105, 10791 (2001).
http://dx.doi.org/10.1021/jp012582s
21.
21.D. S. Perry, J. Phys. Chem. A 112, 215 (2008).
http://dx.doi.org/10.1021/jp077269q
22.
22.M. M. Sprague, S. G. Ramesh, and E. L. Sibert, J. Chem. Phys. 124, 114307 (2006).
http://dx.doi.org/10.1063/1.2178297
23.
23.E. L. Sibert, J. T. Hynes, and W. P. Reinhardt, J. Phys. Chem. 87, 2032 (1983).
http://dx.doi.org/10.1021/j100235a004
24.
24.J. Svitak, Z. Li, J. Rose, and M. E. Kellman, J. Chem. Phys. 102, 4340 (1995).
http://dx.doi.org/10.1063/1.469483
25.
25.J. M. Standard, E. D. Lynch, and M. E. Kellman, J. Chem. Phys. 93, 159 (1990).
http://dx.doi.org/10.1063/1.459588
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.3480017 for optimized fit parameters.[Supplementary Material]
27.
27.R. L. Devaney, Am. Math. Mon. 106, 289 (1999).
http://dx.doi.org/10.2307/2589552
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/10/10.1063/1.3480017
Loading
/content/aip/journal/jcp/133/10/10.1063/1.3480017
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/10/10.1063/1.3480017
2010-09-14
2016-09-25

Abstract

We present a two-dimensional potential surface for the isomerization in the hydroperoxyl radical and calculate the vibrational spectrum. We then show that a simple effective spectroscopic fitting Hamiltonian is capable of reproducing large scale vibrational spectral structure above the isomerization barrier. Polyad breaking with multiple resonances is necessary to adequately describe the spectral features of the system. Insight into the dynamical nature of isomerization related to the effective Hamiltonian is gained through classical trajectories on the model potential. Contrary to physical intuition, the bend mode is not a “reaction mode,” but rather isomerization requires excitation in both stretch and bend. The dynamics reveals a Farey tree formed from the 2:1 and 3:1 resonances, corresponding to the resonance coupling terms in the effective Hamiltonian, with the prominent 5:2 feature dividing the tree into parts that we call the 3:1 and 2:1 portions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/10/1.3480017.html;jsessionid=LobChOp9VUjD_L4A2Il7ySHY.x-aip-live-01?itemId=/content/aip/journal/jcp/133/10/10.1063/1.3480017&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/10/10.1063/1.3480017&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/10/10.1063/1.3480017'
Right1,Right2,Right3,