Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/10/10.1063/1.3483464
1.
1.R. van Leeuwen, O. V. Gritsenko, and E. J. Baerends, Top. Curr. Chem. 180, 107 (1996).
2.
2.R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.2421
3.
3.O. Gritsenko, R. van Leeuwen, E. van Lenthe, and E. J. Baerends, Phys. Rev. A 51, 1944 (1995).
http://dx.doi.org/10.1103/PhysRevA.51.1944
4.
4.A. Lembarki, F. Rogemond, and H. Chermette, Phys. Rev. A 52, 3704 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.3704
5.
5.O. V. Gritsenko, P. R. T. Schipper, and E. J. Baerends, Int. J. Quantum Chem. 76, 407 (2000).
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)76:3<407::AID-QUA9>3.0.CO;2-A
6.
6.N. Umezawa, Phys. Rev. A 74, 032505 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.032505
7.
7.A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).
http://dx.doi.org/10.1063/1.2213970
8.
8.A. P. Gaiduk and V. N. Staroverov, J. Chem. Phys. 128, 204101 (2008).
http://dx.doi.org/10.1063/1.2920197
9.
9.V. N. Staroverov, J. Chem. Phys. 129, 134103 (2008).
http://dx.doi.org/10.1063/1.2982791
10.
10.F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
11.
11.R. van Leeuwen and E. J. Baerends, Phys. Rev. A 51, 170 (1995).
http://dx.doi.org/10.1103/PhysRevA.51.170
12.
12.A. P. Gaiduk, S. K. Chulkov, and V. N. Staroverov, J. Chem. Theory Comput. 5, 699 (2009).
http://dx.doi.org/10.1021/ct800514z
13.
13.M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
http://dx.doi.org/10.1103/PhysRevA.32.2010
14.
14.H. Ou-Yang and M. Levy, Phys. Rev. Lett. 65, 1036 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1036
15.
15.A. P. Gaiduk and V. N. Staroverov, J. Chem. Phys. 131, 044107 (2009).
http://dx.doi.org/10.1063/1.3176515
16.
16.M. Mundt, S. Kümmel, R. van Leeuwen, and P. -G. Reinhard, Phys. Rev. A 75, 050501(R) (2007).
http://dx.doi.org/10.1103/PhysRevA.75.050501
17.
17.H. Ou-Yang and M. Levy, Phys. Rev. A 44, 54 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.54
18.
18.V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations (Dover, New York, 1959).
19.
19.M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators (Holden–Day, San Francisco, 1964).
20.
20.R. van Leeuwen, Adv. Quantum Chem. 43, 25 (2003).
http://dx.doi.org/10.1016/S0065-3276(03)43002-5
21.
21.J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8800
22.
22.P. M. W. Gill and J. A. Pople, Phys. Rev. A 47, 2383 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.2383
23.
23.G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 4th ed. (Academic, San Diego, 1995).
24.
24.Y. Wang, J. P. Perdew, J. A. Chevary, L. D. Macdonald, and S. H. Vosko, Phys. Rev. A 41, 78 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.78
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/10/10.1063/1.3483464
Loading
/content/aip/journal/jcp/133/10/10.1063/1.3483464
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/10/10.1063/1.3483464
2010-09-10
2016-12-03

Abstract

We propose a method for imposing an important exact constraint on model Kohn–Sham potentials, namely, the requirement that they be functional derivatives of functionals of the electron density . In particular, we show that if a model potential involves no ingredients other than , , and , then the necessary and sufficient condition for to be a functional derivative is . Integrability conditions of this type can be used to construct functional derivatives without knowing their parent functionals. This opens up possibilities for developing model exchange-correlation potentials that do not lead to unphysical effects common to existing approximations. Application of the technique is illustrated with examples.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/10/1.3483464.html;jsessionid=DBsory2UhzT6dSn8YElHVzF5.x-aip-live-02?itemId=/content/aip/journal/jcp/133/10/10.1063/1.3483464&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/10/10.1063/1.3483464&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/10/10.1063/1.3483464'
Right1,Right2,Right3,