Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/11/10.1063/1.3481578
1.
1.A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).
http://dx.doi.org/10.1103/RevModPhys.35.668
2.
2.G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 129, 134108 (2008);
http://dx.doi.org/10.1063/1.2983652
2.A. V. Sinitskiy, L. Greenman, and D. A. Mazziotti, J. Chem. Phys. 133, 014104 (2010).
http://dx.doi.org/10.1063/1.3459059
3.
3.D. A. Mazziotti and R. M. Erdahl, Phys. Rev. A 63, 042113 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.042113
4.
4.D. A. Mazziotti, Adv. Chem. Phys. 134, 21 (2007).
5.
5.T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.2111
6.
6.M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979).
http://dx.doi.org/10.1073/pnas.76.12.6062
7.
7.S. M. Valone, J. Chem. Phys. 73, 1344 (1980).
http://dx.doi.org/10.1063/1.440249
8.
8.M. Piris and P. Otto, Int. J. Quantum Chem. 94, 317 (2003).
http://dx.doi.org/10.1002/qua.10707
9.
9.D. A. Mazziotti, Chem. Phys. Lett. 289, 419 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00470-9
10.
10.M. Piris, Adv. Chem. Phys. 134, 387 (2007).
11.
11.K. Pernal, O. Gritsenko, and E. J. Baerends, Phys. Rev. A 75, 012506 (2007);
http://dx.doi.org/10.1103/PhysRevA.75.012506
11.D. R. Rohr, K. Pernal, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 129, 164105 (2008);
http://dx.doi.org/10.1063/1.2998201
11.K. J. H. Giesbertz, K. Pernal, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 130, 114104 (2009);
http://dx.doi.org/10.1063/1.3079821
11.N. N. Lathiotakis, S. Sharma, J. K. Dewhurst, F. G. Eich, M. A. L. Marques, and E. K. U. Gross, Phys. Rev. A 79, 040501 (2009);
http://dx.doi.org/10.1103/PhysRevA.79.040501
11.N. N. Lathiotakis, S. Sharma, N. Helbig, J. K. Dewhurst, M. A. L. Marques, F. Eich, T. Baldsiefen, A. Zacarias, and E. K. U. Gross, Z. Phys. Chem. 224, 467 (2010);
http://dx.doi.org/10.1524/zpch.2010.6118
11.R. Requist and O. Pankratov, Phys. Rev. A 81, 042519 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.042519
12.
12.M. Piris, X. Lopez, and J. M. Ugalde, J. Chem. Phys. 126, 214103 (2007);
http://dx.doi.org/10.1063/1.2743019
12.M. Piris, X. Lopez, and J. M. Ugalde, Int. J. Quantum Chem. 108, 1660 (2008);
http://dx.doi.org/10.1002/qua.21572
12.M. Piris, X. Lopez, and J. M. Ugalde, J. Chem. Phys. 128, 134102 (2008).
http://dx.doi.org/10.1063/1.2883959
13.
13.M. Piris, J. M. Matxain, X. Lopez, and J. M. Ugalde, J. Chem. Phys. 131, 021102 (2009).
http://dx.doi.org/10.1063/1.3180958
14.
14.M. Piris, J. M. Matxain, X. Lopez, and J. M. Ugalde, J. Chem. Phys. 132, 031103 (2010).
http://dx.doi.org/10.1063/1.3298694
15.
15.X. Lopez, M. Piris, J. M. Matxain, and J. M. Ugalde, “Performance of PNOF3 for reactivity studies: X[BO] and X[CN] isomerization reactions (X=H,Li) as a case study,”Phys. Chem. Chem. Phys. (in press).
http://dx.doi.org/10.1039/c003379k
16.
16.M. Piris, Int. J. Quantum Chem. 106, 1093 (2006).
http://dx.doi.org/10.1002/qua.20858
17.
17.D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008);
http://dx.doi.org/10.1103/PhysRevLett.101.253002
17.D. A. Mazziotti, Phys. Rev. A 81, 062515 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.062515
18.
18.M. Piris, L. A. Montero, and N. Cruz, J. Chem. Phys. 107, 180 (1997);
http://dx.doi.org/10.1063/1.474363
18.M. Piris, J. Math. Chem. 25, 47 (1999).
http://dx.doi.org/10.1023/A:1019111828412
19.
19.P. Leiva and M. Piris, J. Chem. Phys. 123, 214102 (2005);
http://dx.doi.org/10.1063/1.2135289
19.P. Leiva and M. Piris, J. Theor. Comput. Chem. 4, 1165 (2005);
http://dx.doi.org/10.1142/S0219633605001969
19.P. Leiva and M. Piris, J. Mol. Struct.: THEOCHEM 770, 45 (2006);
http://dx.doi.org/10.1016/j.theochem.2006.05.001
19.P. Leiva and M. Piris, Int. J. Quantum Chem. 107, 1 (2007);
http://dx.doi.org/10.1002/qua.21058
19.M. Piris, J. M. Matxain, and J. M. Ugalde, J. Chem. Phys. 129, 014108 (2008).
http://dx.doi.org/10.1063/1.2950094
20.
20.J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
http://dx.doi.org/10.1103/PhysRev.108.1175
21.
21.M. Piris and R. Cruz, Int. J. Quantum Chem. 53, 353 (1995);
http://dx.doi.org/10.1002/qua.560530402
21.V. N. Staroverov and G. E. Scuseria, J. Chem. Phys. 117, 11107 (2002);
http://dx.doi.org/10.1063/1.1523060
21.G. E. Scuseria and T. Tsuchimochi, J. Chem. Phys. 131, 164119 (2009).
http://dx.doi.org/10.1063/1.3257965
22.
22.H. Shull and P. O. Lowdin, J. Chem. Phys. 30, 617 (1959);
http://dx.doi.org/10.1063/1.1730019
22.W. Kutzelnigg, Theor. Chim. Acta 1, 327 (1963).
http://dx.doi.org/10.1007/BF00528764
23.
23.M. Piris and J. M. Ugalde, J. Comput. Chem. 30, 2078 (2009);
http://dx.doi.org/10.1002/jcc.21225
24.
24.NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, edited by R. D. Johnson, III (http://cccbdb.nist.gov).
25.
25.M. W. Chase, Jr., J. Phys. Chem. Ref. Data Monogr. 9, 1 (1998).
26.
26.K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand-Reinhold, New York, 1979).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/11/10.1063/1.3481578
Loading
/content/aip/journal/jcp/133/11/10.1063/1.3481578
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/11/10.1063/1.3481578
2010-09-15
2016-12-05

Abstract

The positivity conditions for the -representability of the reduced density matrices are considered to propose a new natural orbital functional. The Piris reconstruction functional, which is based on an explicit form of the two-particle cumulant is used to reconstruct the two-particle reduced density matrix. A new approach for matrix, satisfying rigorously , , and necessary conditions, leads to Piris Natural Orbital Functional 4 (PNOF4). The theory is applied to the dissociation of selected diatomic molecules. The equilibrium distances, dipole moments, harmonic frequencies, anharmonicity constants, and binding energies of the considered molecules are presented. The values we have obtained are very accurate results comparing with the experimental data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/11/1.3481578.html;jsessionid=5qArhmzTdmFvUiggG2es_Iub.x-aip-live-06?itemId=/content/aip/journal/jcp/133/11/10.1063/1.3481578&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/11/10.1063/1.3481578&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/11/10.1063/1.3481578'
Right1,Right2,Right3,