Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/11/10.1063/1.3486090
1.
1.D. Frenkel, Physica A 263, 26 (1999);
http://dx.doi.org/10.1016/S0378-4371(98)00501-9
1.M. G. Noro, N. Kern, and D. Frenkel, Europhys. Lett. 48, 332 (1999).
http://dx.doi.org/10.1209/epl/i1999-00485-9
2.
2.P. R. ten Wodle and D. Frenkel, Science 277, 1975 (1997).
http://dx.doi.org/10.1126/science.277.5334.1975
3.
3.O. Galkin and P. G. Vekilov, J. Am. Chem. Soc. 122, 156 (2000).
http://dx.doi.org/10.1021/ja9930869
4.
4.G. C. Boulougouris and D. Frenkel, J. Chem. Phys. 122, 244106 (2005).
http://dx.doi.org/10.1063/1.1931652
5.
5.E. Zaccarelli, F. Sciortino, and P. Tartaglia, J. Phys.: Condens. Matter 16, S4849 (2004).
http://dx.doi.org/10.1088/0953-8984/16/42/004
6.
6.P. Bolhuis and D. Frenkel, Phys. Rev. Lett. 72, 2211 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2211
7.
7.A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987).
http://dx.doi.org/10.1080/00268978700101491
8.
8.D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000).
9.
9.D. A. Kofke, Mol. Phys. 78, 1331 (1993);
http://dx.doi.org/10.1080/00268979300100881
9.D. A. Kofke, J. Chem. Phys. 98, 4149 (1993).
http://dx.doi.org/10.1063/1.465023
10.
10.B. Chen, J. I. Siepmann, and M. L. Klein, J. Phys. Chem. B 105, 9840 (2001).
http://dx.doi.org/10.1021/jp011950p
11.
11.C. Borgs and R. Kotecky, Phys. Rev. Lett. 68, 1734 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1734
12.
12.B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992);
http://dx.doi.org/10.1103/PhysRevLett.68.9
12.J. Lee, Phys. Rev. Lett. 71, 211 (1993);
http://dx.doi.org/10.1103/PhysRevLett.71.211
12.F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2050
13.
13.E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992);
http://dx.doi.org/10.1209/0295-5075/19/6/002
13.A. P. Lyubartsev, A. A. Martinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992).
http://dx.doi.org/10.1063/1.462133
14.
14.R. H. Swendsen and J. -S. Wang, Phys. Rev. Lett. 57, 2607 (1986);
http://dx.doi.org/10.1103/PhysRevLett.57.2607
14.K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).
http://dx.doi.org/10.1143/JPSJ.65.1604
15.
15.A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988);
http://dx.doi.org/10.1103/PhysRevLett.61.2635
15.A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett.63, 1195 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1195
16.
16.D. A. McQuarrie, Statistical Mechanics (University Science, Sausalito, 2000).
17.
17.D. P. Noon and G. Orkoulas, Mol. Simul. 36, 535 (2010).
http://dx.doi.org/10.1080/08927021003671574
18.
18.D. L. Pagan and J. D. Gunton, J. Chem. Phys. 122, 184515 (2005);
http://dx.doi.org/10.1063/1.1890925
18.H. Liu, S. Garde, and S. Kumar, J. Chem. Phys. 123, 174505 (2005).
http://dx.doi.org/10.1063/1.2085051
19.
19.W. G. Hoover and F. H. Ree, J. Chem. Phys. 47, 4873 (1967);
http://dx.doi.org/10.1063/1.1701730
19.W. G. Hoover and F. H. Ree, J. Chem. Phys.49, 3609 (1968).
http://dx.doi.org/10.1063/1.1670641
20.
20.G. Orkoulas and D. P. Noon, J. Chem. Phys. 131, 161106 (2009).
http://dx.doi.org/10.1063/1.3257111
21.
21.G. Orkoulas, Mol. Simul. 36, 516 (2010).
http://dx.doi.org/10.1080/08927022.2010.496785
22.
22.G. Orkoulas, J. Chem. Phys. 127, 084106 (2007);
http://dx.doi.org/10.1063/1.2759923
22.C. J. O’Keeffe, R. Ren, and G. Orkoulas, J. Chem. Phys. 127, 194103 (2007).
http://dx.doi.org/10.1063/1.2799192
23.
23.M. Fitzgerald, R. R. Picard, and R. N. Silver, J. Stat. Phys. 98, 321 (2000);
http://dx.doi.org/10.1023/A:1018635108073
23.J. -S. Wang and R. H. Swendsen, J. Stat. Phys. 106, 245 (2002);
http://dx.doi.org/10.1023/A:1013180330892
23.J. R. Errington, J. Chem. Phys. 118, 9915 (2003);
http://dx.doi.org/10.1063/1.1572463
23.E. M. Grzelak and J. R. Errington, Langmuir 26, 13297 (2010).
http://dx.doi.org/10.1021/la1016164
24.
24.G. C. Boulougouris and D. Frenkel, J. Chem. Theory Comput. 1, 389 (2005).
http://dx.doi.org/10.1021/ct049900m
25.
25.N. B. Wilding and A. D. Bruce, Phys. Rev. Lett. 85, 5138 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5138
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/11/10.1063/1.3486090
Loading
/content/aip/journal/jcp/133/11/10.1063/1.3486090
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/11/10.1063/1.3486090
2010-09-20
2016-12-02

Abstract

Precise simulation of phase transitions is crucial for colloid/protein crystallization for which fluid-fluid demixing may be metastable against solidification. In the Gibbs–Duhem integration method, the two coexisting phases are simulated separately, usually at constant-pressure, and the phase boundary is established iteratively via numerical integration of the Clapeyron equation. In this work, it is shown that the phase boundary can also be reproduced in a way that avoids integration of Clapeyron equations. The two phases are simulated independently via tempering techniques and the simulation data are analyzed according to histogram reweighting. The main output of this analysis is the density of states which is used to calculate the free energies of both phases and to determine phase coexistence. This procedure is used to obtain the phase diagram of a square-well model with interaction range , where is the particle diameter. The phase boundaries can be estimated with the minimum number of simulations. In particular, very few simulations are required for the solid phase since its properties vary little with temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/11/1.3486090.html;jsessionid=y-s37zHLXD0CUiox40PmOt6g.x-aip-live-06?itemId=/content/aip/journal/jcp/133/11/10.1063/1.3486090&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/11/10.1063/1.3486090&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/11/10.1063/1.3486090'
Right1,Right2,Right3,