Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/12/10.1063/1.3497041
1.
1.H. -C. Chang, Can. J. Chem. Eng. 84, 1 (2006).
http://dx.doi.org/10.1139/v05-255
2.
2.J. Viovy, Rev. Mod. Phys. 72, 813 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.813
3.
3.G. B. Salieb-Beugelaar, K. D. Dorfman, A. Berg, and J. C. T. Eijkel, Lab Chip 9, 2508 (2009).
http://dx.doi.org/10.1039/b905448k
4.
4.M. Smoluchowski, in Handbuch der Elektrizität und des Magnetismus, Band II, Stationaire Ströme, edited by L. Graetz (Barth-Verlag, Leipzig, 1921).
5.
5.J. Lyklema, Fundamentals of Interface and Colloid Science (Academic, New York, 1995), Vol. II.
6.
6.D. A. Saville, Annu. Rev. Fluid Mech. 9, 321 (1977).
http://dx.doi.org/10.1146/annurev.fl.09.010177.001541
7.
7.J. L. Anderson, Annu. Rev. Fluid Mech. 30, 139 (1989).
http://dx.doi.org/10.1146/annurev.fluid.30.1.139
8.
8.D. C. Prieve, J. P. Ebel, J. L. Anderson, and M. E. Lowell, J. Fluid Mech. 148, 247 (1984).
http://dx.doi.org/10.1017/S0022112084002330
9.
9.For a physiological saline solution, for example, where , Eq. (1) predicts a nanometric Debye thickness. Thus, even for micron-size particles.
10.
10.F. A. Morrison, J. Colloid Interface Sci. 34, 210 (1970).
http://dx.doi.org/10.1016/0021-9797(70)90171-2
11.
11.Generally, papers that do consider that mechanism (Ref. 20) assume at the outset an imposed salt gradient rather than voltage.
12.
12.V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, 1962).
13.
13.M. Z. Bazant, K. T. Chu, and B. J. Bayly, SIAM J. Appl. Math. 65, 1463 (2005).
http://dx.doi.org/10.1137/040609938
14.
14.Y. Ben and H. -C. Chang, J. Fluid Mech. 461, 229 (2002).
http://dx.doi.org/10.1017/S0022112002008662
15.
15.I. Rubinstein and B. Zaltzman, Math. Models Meth. Appl. Sci. 11, 263 (2001).
http://dx.doi.org/10.1142/S0218202501000866
16.
16.R. W. O’Brien, J. Colloid Interface Sci. 92, 204 (1983).
http://dx.doi.org/10.1016/0021-9797(83)90129-7
17.
17.H. Ohshima, J. Colloid Interface Sci. 248, 499 (2002).
http://dx.doi.org/10.1006/jcis.2002.8232
18.
18.H. Ohshima, J. Colloid Interface Sci. 263, 337 (2003).
http://dx.doi.org/10.1016/S0021-9797(03)00280-7
19.
19.E. Yariv, SIAM J. Appl. Math. 69, 453 (2008).
http://dx.doi.org/10.1137/070711219
20.
20.Y. K. Wei and H. J. Keh, J. Colloid Interface Sci. 248, 76 (2002).
http://dx.doi.org/10.1006/jcis.2001.8175
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/12/10.1063/1.3497041
Loading
/content/aip/journal/jcp/133/12/10.1063/1.3497041
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/12/10.1063/1.3497041
2010-09-28
2016-12-09

Abstract

A charged colloidal particle which is suspended in an electrolyte solution drifts due to an external voltage application. For direct currents, particle motion is affected by two separate mechanisms: electro-osmotic slip associated with the electric field and chemi-osmotic slip associated with the inherent salt concentration gradient in the solution. These two mechanisms are interrelated and are of comparable magnitude. Their combined effect is demonstrated for cation-exchange electrodes using a weak-current approximation. The linkage between the two mechanisms results in an effectively modified mobility, whose dependence on the particle zeta potential is nonlinear. At small potentials, the electro-osmotic mechanism dominates and the particle migrates according to the familiar Smoluchowski mobility, linear in the electric field. At large zeta potentials, chemiosmosis becomes dominant: for positively charged particles, it tends to arrest motion, leading to mobility saturation; for negatively charged particles, it enhances the drift, effectively leading to a shifted linear dependence of the mobility on the zeta potential, with twice the Smoluchowski slope.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/12/1.3497041.html;jsessionid=kV1eouEoY8ISlaul3Q-_5D_D.x-aip-live-06?itemId=/content/aip/journal/jcp/133/12/10.1063/1.3497041&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/12/10.1063/1.3497041&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/12/10.1063/1.3497041'
Right1,Right2,Right3,