1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite
Rent:
Rent this article for
USD
10.1063/1.3456543
/content/aip/journal/jcp/133/13/10.1063/1.3456543
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/13/10.1063/1.3456543

Figures

Image of FIG. 1.
FIG. 1.

(a) DHC unit used in this study. Since coronene has armchairlike edges, there are no dangling bonds: Each empty -orbital forms a bond with its neighbor. All carbon atoms are equivalent, making this molecule a reliable model for bulk graphite. (b) The optimized PD-X configuration from level of DFT. This is the most stable of the three configurations tested and is most similar to bulk graphite . (c) The optimized PD-Y configuration, which is 0.66 kcal/mol higher than PD-X and represents a saddle point for sliding two DHC units. Our optimized geometry is similar to QM studies on the CD. (d) The high energy eclipsed structure is 6.05 kcal/mol higher than PD-X.

Image of FIG. 2.
FIG. 2.

Comparison of basis set for the counterpoise corrected binding energy of the PD-X configuration of DHC at the MO6-2X level DFT theory. Data are smooth using cubic splines (dashed lines) for presentation purposes. Single point energies in the various basis set were calculated using the minimum energy structure and the counterpoise corrections are then estimated. The basis set was selected as a good compromise of speed (1056 basis functions) and accuracy.

Image of FIG. 3.
FIG. 3.

Comparison of the QMFF-Cx and M06-2X vdW curves for the DHC (a) PD-X and (b) eclipsed geometries. The bottom of the PD-X curve was used in the fitting for all the QMFF-Cx potentials, while the PD-Y energy was used to fit the X6 and Morse potentials. The high energy, eclipsed geometry is well described only for the X6S (stretched X6) potential, which reproduces the QM value distance (3.565 Å) and energy (−10.68 kcal/mol). Inset: examination of equilibrium positions (3.4–3.8 Å) for the both geometries.

Image of FIG. 4.
FIG. 4.

PECs for the four potentials considered in this study. The parameters were all determined from the interaction of the DHC dimer from M06-2X DFT theory. The X6 and Morse potentials lead to predictions in excellent agreement with the QM for the PD-X and PD-Y geometrics, but are not able to reproduce the energetics of the high energy DHC eclipsed structure. The X6S potential has an additional parameter relating to the inner wall curvature parameter of 26.9 (compared to 20.7 for X6) and is able to reproduce the high energy structure.

Image of FIG. 5.
FIG. 5.

(a) PES and (b) contour plot for sliding a periodic graphene sheet (96 atoms) over another in 0.1 Å displacements, using the X6 potential. The interplanar distance was optimized at each displacement. All energies are referenced to the PD-X structure, the global minima. The PD-Y structure is a low energy minima . The PD-X PD-Y barrier is 0.0156 kcal/mol C and a low energy pathway for sliding is obtained by tracing the edges of the hexagon unit. The AA stacked eclipsed graphite structure is high energy .

Image of FIG. 6.
FIG. 6.

Phonon dispersion curve for all vibrational modes of (hexagonal) graphite at 0 K using the X6 potential.

Image of FIG. 7.
FIG. 7.

Phonon dispersion curves for the low frequency modes of (hexagonal) graphite at 300 K. Solid lines from theory and symbols from experimental data (Refs. 18, 19, 42, and 77).

Image of FIG. 8.
FIG. 8.

Specific heat of hexagonal graphite as computed with the QM-FF X6 potential. Low temperature results obtained from the thin plate approximation, other results obtained from the uniform grid method. Experimental results from different sources are indicated, as reported in Refs. 27 and 46. Values for rhombohedral graphite are not plotted since the lines would be essentially superimposed on the hexagonal graphite lines.

Image of FIG. 9.
FIG. 9.

(a) In-plane lattice parameter of graphite as a function of temperature, calculated with the QM-FF X6 potential. The experimental results (Ref. 52) (red squares) are compared the calculated values (black triangles). The solid black line is the least-squares line to the FF using cubic spline regression. (b) Out of plane lattice parameter of graphite as a function of temperature, calculated with the QM-FF X6 potential. The experimental results (Ref. 52) (red squares) are compared the calculated values (black triangles). The solid black line is the least-squares line by cubic spline regression.

Tables

Generic image for table
Table I.

Comparison of interaction energies (kcal/mol) for PD-X, PD-Y, and eclipsed DHC dimer structures between QM (counterpoise corrected and uncorrected ) and QMFF-Cx. These can be compared to similar numbers on the CD from DFT and MP2 calculations. PD-X is topologically similar to the graphite structure, while PD-Y is a saddle point corresponding to the barrier between two adjacent PD-X minima. The interplane displacements for the QM structures are quoted in brackets.

Generic image for table
Table II.

Optimized FF parameters for graphite at 0 K.

Generic image for table
Table III.

Calculated properties for graphite at 0 K (numbers in parenthesis indicate values at 300 K). The , and , experimental lattice modes are used in the FF optimization.

Generic image for table
Table IV.

Comparison of QMFF-Cx X6 with published vdW parameters for carbon. In each, the valence parameters are adjusted to match the correct experimental in-plane (a) lattice parameter. Errors relative to the experimental value are indicated in brackets for properties sensitive to the vdW.

Generic image for table
Table V.

Phonon frequencies of graphite and derivatives at the high-symmetry points , , , and in . The X6 (0 K) is compared to results from ab initio DFT studies and experiment (300 K).

Loading

Article metrics loading...

/content/aip/journal/jcp/133/13/10.1063/1.3456543
2010-10-06
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/13/10.1063/1.3456543
10.1063/1.3456543
SEARCH_EXPAND_ITEM