Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. L. Costen, S. Marinakis, and K. G. McKendrick, Chem. Soc. Rev. 37, 732 (2008).
2.P. W. Barnes, I. R. Sims, and I. W. M. Smith, J. Chem. Phys. 120, 5592 (2004).
3.M. Elitzur, Astronomical Masers (Springer, New York, 1992).
4.B. Lefloch, J. Cernicharo, B. Reipurth, J. R. Pardo, and R. Neri, Astrophys. J. 658, 498 (2007).
5.J. Brudermann, C. Steinbach, U. Buck, K. Patkowski, and R. Moszynski, J. Chem. Phys. 117, 11166 (2002).
6.W. B. Chapman, A. Kulcke, B. W. Blackmon, and D. J. Nesbitt, J. Chem. Phys. 110, 8543 (1999).
7.D. Cappelletti, V. Aquilanti, E. Cornicchi, M. Moix Teixidor, and F. Pirani, J. Chem. Phys. 123, 024302 (2005).
8.V. Aquilanti, E. Cornicchi, M. M. Teixidor, N. Saendig, F. Pirani, and D. Cappelletti, Angew. Chem., Int. Ed. 44, 2356 (2005).
9.A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
10.K. T. Lorenz, D. W. Chandler, J. W. Barr, W. Chen, G. L. Barnes, and J. I. Cline, Science 293, 2063 (2001);
10.H. Kohguchi, T. Suzuki, and M. H. Alexander, Science 294, 832 (2001).
11.C. -H. Yang, G. Sarma, J. J. ter Meulen, D. H. Parker, G. C. McBane, and L. Wiesenfeld (unpublished).
12.C. -H. Yang, J. J. ter Meulen, D. H. Parker, and C. M. Western, “REMPI spectroscopy and predissociation of the rotational levels of , HOD, and ,” Phys. Chem. Chem. Phys. (submitted).
13.G. C. McBane, “IMSIM” program, version 2, available at
14.K. T. Lorenz, D. W. Chandler, and G. C. McBane, J. Phys. Chem. A 106, 1144 (2002).
15.N. Troscompt, A. Faure, M. Wiesenfeld, C. Ceccaelli, and P. Valiron, Astron. Astrophys. 493, 687 (2009).
16.M. P. Hodges, R. J. Wheatley, and A. H. Harvey, J. Chem. Phys. 116, 1397 (2002).
17.A. Faure, P Valiron, M. Wernli, L. Wiesenfeld, C. Riste, J. Noga, and J. Tennyson, J. Chem. Phys. 122, 221102 (2005).
18.P. Valiron, M. Wernli, A. Faure, L. Wiesenfeld, C. Rist, S. Kedžuch, and J. Noga, J. Chem. Phys. 129, 134306 (2008).
19.B. Yang and P. C. Stancil, J. Chem. Phys. 126, 154306 (2007).
20.M. L. Dubernet, M. -L. Dubernet, F. Daniel, A. Grosjean, A. Faure, P. Valiron, M. Wernli, L. Wiesenfeld, C. Rist, J. Noga, and J. Tennyson, Astron. Astrophys. 323, 460 (2006).
21.A. Faure, N. Crimier, C. Ceccarelli, P. Valiron, L. Wiesenfeld, and M. L. Dubernet, Astron. Astrophys. 472, 1029 (2007).
22.M. L. Dubernet, F. Daniel, F. A. Grosjean, and C. Y. Lin, Astron. Astrophys. 497, 911 (2009).
23.T. R. Phillips, S. Maluendes, and S. Green, J. Chem. Phys. 102, 6024 (1995).
24.J. M. Hutson and S. Green, MOLSCAT computer code, version 14 (1994), distributed by Collaborative Computational Project No. 6 of the Engineering and Physical Sciences Research Council (U.K.).
25.A. R. Edmonds, Angular Momentum in Quantum Mechanics, 4th ed. (Princeton University Press, Princeton, NJ, 1996).
26.See Fig. 1, A. Grosjean, M. -L. Dubernet, and C. Ceccarelli, Astron. Astrophys. 408, 1197 (2003).
27.See Fig. 2, M. -L. Dubernet and A. Grosjean, Astron. Astrophys. 390, 793 (2002).
28.M. J. Dick, B. J. Drouin, and J. C. Pearson, J. Quant. Spectrosc. Radiat. Transf. 110, 619 (2009).
29.L. Wiesenfeld and A. Faure, “Ab initio computation of the broadening of water rotational lines by molecular hydrogen,” Phys. Rev. A (submitted).

Data & Media loading...


Article metrics loading...



We report a joint experimental and theoretical study that directly tests the quality of the potential energy surfaces used to calculate energy changing cross sections of water in collision with helium and molecular hydrogen, at conditions relevant for astrophysics. Fully state-to-state differential cross sections are measured for and collisions at 429 and collision energy, respectively. We compare these differential cross sections with theoretical ones for derived from state-of-the-art potential energy surfaces [P. Valiron et al., J. Chem. Phys.129, 134306 (2008)] and quantum scattering calculations. This detailed comparison forms a stringent test of the validity of astrophysics calculations for energy changing rates in water. The agreement between theory and experiment is striking for most of the state-to-state differential cross sections measured.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd