Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/13/10.1063/1.3499857
1.
1.L. Onsager, Phys. Rev. 65, 117 (1944).
http://dx.doi.org/10.1103/PhysRev.65.117
2.
2.R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Dover, New York, 2007).
3.
3.V. L. Kulinskii, J. Phys. Chem. B 114, 2852 (2010).
http://dx.doi.org/10.1021/jp911897k
4.
4.J. G. Powles, J. Phys. C 16, 503 (1983);
http://dx.doi.org/10.1088/0022-3719/16/3/012
4.D. Ben-Amotz and D. R. Herschbach, Isr. J. Chem. 30, 59 (1990).
5.
5.E. M. Apfelbaum, V. S. Vorob’ev, and G. A. Martynov, J. Phys. Chem. B 110, 8474 (2006).
http://dx.doi.org/10.1021/jp057327c
6.
6.E. M. Apfelbaum and V. S. Vorob’ev, J. Phys. Chem. B 112, 13064 (2008).
http://dx.doi.org/10.1021/jp8066487
7.
7.J. -P. Hansen and I. R. Mcdonald, Theory of Simple Liquids, 3rd ed. (Academic, New York, 2006).
8.
8.L. D. Landau and E. M. Lifshitz, Statistical Physics (Part 1), 3rd ed. (Pergamon, Oxford, 1980).
9.
9.E. M. Apfelbaum and V. S. Vorob’ev, J. Phys. Chem. B 114, 9820 (2010).
http://dx.doi.org/10.1021/jp1022899
10.
10.V. L. Kulinskii, J. Chem. Phys. 133, 034121 (2010).
http://dx.doi.org/10.1063/1.3457943
11.
11.A. Z. Panagiotopoulos, J. Chem. Phys. 112, 7132 (2000).
http://dx.doi.org/10.1063/1.481307
12.
12.S. Jiang and K. E. Gubbins, Mol. Phys. 86, 599 (1995).
http://dx.doi.org/10.1080/00268979500102221
13.
13.R. R. Singh, K. S. Pitzer, J. J. de Pablo, and J. M. Prausnitz, J. Chem. Phys. 92, 5463 (1990).
http://dx.doi.org/10.1063/1.458524
14.
14.A. L. Talapov and H. W. J. Blote, J. Phys. A 29, 5727 (1996).
http://dx.doi.org/10.1088/0305-4470/29/17/042
15.
15.E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
http://dx.doi.org/10.1063/1.1724033
16.
16.D. O. Dunikov, S. P. Malyshenko, and V. V. Zhakhovskii, J. Chem. Phys. 115, 6623 (2001).
http://dx.doi.org/10.1063/1.1396674
17.
17.W. Z. Ou-Yang, Z. -Y. Lu, T. -F. Shi, Z. -Y. Sun, and L. -J. An, J. Chem. Phys. 123, 234502 (2005).
http://dx.doi.org/10.1063/1.2135775
18.
18.M. J. Buckingham, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic, London, 1972), Vol. 2, p. 18;
18.S. C. Greer and M. R. Moldover, Annu. Rev. Phys. Chem. 32, 233 (1981);
http://dx.doi.org/10.1146/annurev.pc.32.100181.001313
18.J. V. Sengers and J. M. H. L. Sengers, Annu. Rev. Phys. Chem. 37, 189 (1986).
http://dx.doi.org/10.1146/annurev.pc.37.100186.001201
19.
19.J. J. Rehr and N. D. Mermin, Phys. Rev. A 8, 472 (1973).
http://dx.doi.org/10.1103/PhysRevA.8.472
20.
20.Y. C. Kim, M. E. Fisher, and G. Orkoulas, Phys. Rev. E 67, 061506 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.061506
21.
21.V. Kulinskii and N. Malomuzh, Physica A 388, 621 (2009).
http://dx.doi.org/10.1016/j.physa.2008.11.014
22.
22.H. Okumura and F. Yonezawa, J. Chem. Phys. 113, 9162 (2000).
http://dx.doi.org/10.1063/1.1320828
23.
23.B. Smit and D. Frenkel, J. Chem. Phys. 94, 5663 (1991).
http://dx.doi.org/10.1063/1.460477
24.
24.A. Lotfi, J. Vrabec, and J. Fischer, Mol. Phys. 76, 1319 (1992).
http://dx.doi.org/10.1080/00268979200102111
25.
25.N. B. Wilding, Phys. Rev. E 52, 602 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.602
26.
26.P. J. Camp and G. N. Patey, J. Chem. Phys. 114, 399 (2001).
http://dx.doi.org/10.1063/1.1329134
27.
27.Y. Duda, A. Romero-Martínez, and P. Orea, J. Chem. Phys. 126, 224510 (2007).
http://dx.doi.org/10.1063/1.2743623
28.
28.S. C. Greer, B. K. Das, A. Kumar, and E. S. R. Gopal, J. Chem. Phys. 79, 4545 (1983);
http://dx.doi.org/10.1063/1.446369
28.S. Jüngst, B. Knuth, and F. Hensel, Phys. Rev. Lett. 55, 2160 (1985);
http://dx.doi.org/10.1103/PhysRevLett.55.2160
28.J. Wang and M. A. Anisimov, Phys. Rev. E 75, 051107 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.051107
29.
29.Y. Kim and M. Fisher, Chem. Phys. Lett. 414, 185 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.07.105
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/13/10.1063/1.3499857
Loading
/content/aip/journal/jcp/133/13/10.1063/1.3499857
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/13/10.1063/1.3499857
2010-10-06
2016-09-28

Abstract

We analyze the interrelation between the coexistence curve of the Lennard-Jones fluid and the Ising model in two and three dimensions within the global isomorphism approach proposed earlier [V. L. Kulinskii, J. Phys. Chem. B114, 2852 (2010)]. In case of two dimensions, we use the exact Onsager result to construct the binodal of the corresponding Lennard-Jones fluid and compare it with the results of the simulations. In the three-dimensional case, we use available numerical results for the Ising model for the corresponding mapping. The possibility to observe the singularity of the binodal diameter is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/13/1.3499857.html;jsessionid=WrLMu9G_W2GcZhCQx5JMvwtz.x-aip-live-06?itemId=/content/aip/journal/jcp/133/13/10.1063/1.3499857&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/13/10.1063/1.3499857&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/13/10.1063/1.3499857'
Right1,Right2,Right3,