Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/14/10.1063/1.3499315
1.
1.W. Wagner and A. Pruss, J. Phys. Chem. Ref. Data 31, 387 (2002).
http://dx.doi.org/10.1063/1.1461829
2.
2.D. Asthagiri, L. R. Pratt, and J. D. Kress, Phys. Rev. E 68, 041505 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.041505
3.
3.M. J. McGrath, J. I. Siepmann, I. -F. W. Kuo, C. J. Mundy, J. VandeVondele, M. Sprik, J. Hutter, F. Mohammed, M. Krack, and M. Parrinello, J. Phys. Chem. A 110, 640 (2006).
http://dx.doi.org/10.1021/jp0535947
4.
4.A. Paliwal, D. Asthagiri, L. R. Pratt, H. S. Ashbaugh, and M. E. Paulaitis, J. Chem. Phys. 124, 224502 (2006).
http://dx.doi.org/10.1063/1.2202350
5.
5.J. K. Shah, D. Asthagiri, L. R. Pratt, and M. E. Paulaitis, J. Chem. Phys. 127, 144508 (2007).
http://dx.doi.org/10.1063/1.2766940
6.
6.V. Weber, S. Merchant, P. D. Dixit, and D. Asthagiri, J. Chem. Phys. 132, 204509 (2010).
http://dx.doi.org/10.1063/1.3437061
7.
7.T. L. Beck, M. E. Paulaitis, and L. R. Pratt, The Potential Distribution Theorem and Models of Molecular Solutions (Cambridge University Press, Cambridge, 2006).
http://dx.doi.org/10.1017/CBO9780511536663
8.
8.B. Widom, J. Phys. Chem. 86, 869 (1982).
http://dx.doi.org/10.1021/j100395a005
9.
9.D. Asthagiri, H. S. Ashbaugh, A. Piryatinski, M. E. Paulaitis, and L. R. Pratt, J. Am. Chem. Soc. 129, 10133 (2007).
http://dx.doi.org/10.1021/ja071037n
10.
10.D. Asthagiri, S. Merchant, and L. R. Pratt, J. Chem. Phys. 128, 244512 (2008).
http://dx.doi.org/10.1063/1.2944252
11.
11.S. Merchant and D. Asthagiri, J. Chem. Phys. 130, 195102 (2009).
http://dx.doi.org/10.1063/1.3132709
12.
12.L. R. Pratt, Annu. Rev. Phys. Chem. 53, 409 (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.090401.093500
13.
13.N. Lu and D. A. Kofke, J. Chem. Phys. 114, 7303 (2001).
http://dx.doi.org/10.1063/1.1359181
14.
14.A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
15.
15.C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
16.
16.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
17.
17.J. Schmidt, J. VandeVondele, I. F. W. Kuo, D. Sebastini, J. I. Siepmann, J. Hutter, and C. J. Mundy, J. Phys. Chem. B 113, 11959 (2009).
http://dx.doi.org/10.1021/jp901990u
18.
18.R. A. Kuharski and P. J. Rossky, J. Chem. Phys. 82, 5164 (1985).
http://dx.doi.org/10.1063/1.448641
19.
19.B. Guillot and Y. Guissani, J. Chem. Phys. 108, 10162 (1998).
http://dx.doi.org/10.1063/1.476475
20.
20.E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, J. Chem. Phys. 121, 5400 (2004).
http://dx.doi.org/10.1063/1.1782074
21.
21.L. Hernández de la Peña and P. G. Kusalik, J. Am. Chem. Soc. 127, 5246 (2005).
http://dx.doi.org/10.1021/ja0424676
22.
22.F. Paesani, S. Iuchi, and G. A. Voth, J. Chem. Phys. 127, 074506 (2007).
http://dx.doi.org/10.1063/1.2759484
23.
23.J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Comput. Phys. Commun. 167, 103 (2005).
http://dx.doi.org/10.1016/j.cpc.2004.12.014
24.
24.H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
25.
25.R. Friedberg and J. E. Cameron, J. Chem. Phys. 52, 6049 (1970).
http://dx.doi.org/10.1063/1.1672907
26.
26.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987), Chap. 6, pp. 192195.
27.
27.G. Hummer, S. Garde, A. E. Garcia, M. E. Paulaitis, and L. R. Pratt, J. Phys. Chem. B 102, 10469 (1998).
http://dx.doi.org/10.1021/jp982873+
28.
28.G. Murdachaew, C. J. Mundy, and G. K. Schenter, J. Chem. Phys. 132, 164102 (2010).
http://dx.doi.org/10.1063/1.3385797
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/14/10.1063/1.3499315
Loading
/content/aip/journal/jcp/133/14/10.1063/1.3499315
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/14/10.1063/1.3499315
2010-10-08
2016-09-30

Abstract

We regularize the potential distribution framework to calculate the excess free energy of liquid water simulated with the BLYP-D density functional. Assuming classical statistical mechanical simulations at 350 K model the liquid at 298 K, the calculated free energy is found in fair agreement with experiments, but the excess internal energy and hence also the excess entropy are not. The utility of thermodynamic characterization in understanding the role of high temperatures to mimic nuclear quantum effects and in evaluating ab initio simulations is noted.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/14/1.3499315.html;jsessionid=HiYwhIr0mdFejg9ZUM18iJRF.x-aip-live-03?itemId=/content/aip/journal/jcp/133/14/10.1063/1.3499315&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/14/10.1063/1.3499315&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/14/10.1063/1.3499315'
Right1,Right2,Right3,