Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/14/10.1063/1.3503173
1.
1.C. C. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
http://dx.doi.org/10.1103/RevModPhys.32.179
2.
2.B. N. Plakhutin, E. V. Gorelik, and N. N. Breslavskaya, J. Chem. Phys. 125, 204110 (2006).
http://dx.doi.org/10.1063/1.2393223
3.
3.B. N. Plakhutin and E. R. Davidson, J. Math. Chem. 45, 859 (2009).
http://dx.doi.org/10.1007/s10910-008-9396-1
4.
4.B. N. Plakhutin and E. R. Davidson, J. Phys. Chem. A 113, 12386 (2009).
http://dx.doi.org/10.1021/jp9002593
5.
5.E. R. Davidson and B. N. Plakhutin, J. Chem. Phys. 132, 184110 (2010).
http://dx.doi.org/10.1063/1.3418615
6.
6.K. R. Glaesemann and M. W. Schmidt, J. Phys. Chem. A 114, 8772 (2010).
http://dx.doi.org/10.1021/jp101758y
7.
7.J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).
http://dx.doi.org/10.1063/1.1740120
8.
8.T. Tsuchimochi and G. E. Scuseria, J. Chem. Phys. 131, 121102 (2009).
http://dx.doi.org/10.1063/1.3237029
9.
9.T. Tsuchimochi, T. M. Henderson, G. E. Scuseria, and A. Savin, J. Chem. Phys. 133, 134108 (2010).
http://dx.doi.org/10.1063/1.3490478
10.
10.N. C. Handy, J. A. Pople, M. Head-Gordon, K. Raghavachari, and G. W. Trucks, Chem. Phys. Lett. 164, 185 (1989).
http://dx.doi.org/10.1016/0009-2614(89)85013-4
11.
11.W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, Chem. Phys. Lett. 187, 21 (1991).
http://dx.doi.org/10.1016/0009-2614(91)90478-R
12.
12.P. J. Knowles, J. S. Andrews, R. D. Amos, N. C. Handy, and J. A. Pople, Chem. Phys. Lett. 186, 130 (1991).
http://dx.doi.org/10.1016/S0009-2614(91)85118-G
13.
13.J. S. Andrews, D. Jayatilaka, R. G. A. Bone, N. C. Handy, and R. D. Amos, Chem. Phys. Lett. 183, 423 (1991).
http://dx.doi.org/10.1016/0009-2614(91)90405-X
14.
14.R. D. Amos, J. S. Andrews, N. C. Handy, and P. J. Knowles, Chem. Phys. Lett. 185, 256 (1991).
http://dx.doi.org/10.1016/S0009-2614(91)85057-4
15.
15.V. N. Glushkov, Int. J. Quantum Chem. 99, 236 (2004).
http://dx.doi.org/10.1002/qua.10851
16.
16.J. E. Harriman, J. Chem. Phys. 40, 2827 (1964).
http://dx.doi.org/10.1063/1.1724913
17.
17.V. Rabanovich, Linear Algebr. Appl. 390, 137 (2004).
http://dx.doi.org/10.1016/j.laa.2004.04.014
18.
18.V. Bach, E. H. Lieb, M. Loss, and J. P. Solovej, Phys. Rev. Lett. 72, 2981 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2981
19.
19.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian Development Version, Revision G.01 (Gaussian, Inc., Wallingford, CT, 2007).
20.
20.See supplementary material at http://dx.doi.org/10.1063/1.3503173 for number of SCF cycles to converge, HOMO energies of open-shell systems, and additional orbital energies.[Supplementary Material]
21.
21.L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople, J. Chem. Phys. 109, 42 (1998).
http://dx.doi.org/10.1063/1.476538
22.
22.R. McWeeny and G. Diercksen, J. Chem. Phys. 49, 4852 (1968).
http://dx.doi.org/10.1063/1.1669970
23.
23.E. R. Davidson and A. E. Clark, Phys. Chem. Chem. Phys. 9, 1881 (2007).
http://dx.doi.org/10.1039/b616481c
24.
24.S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01149-5
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/14/10.1063/1.3503173
Loading
/content/aip/journal/jcp/133/14/10.1063/1.3503173
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/14/10.1063/1.3503173
2010-10-13
2016-12-11

Abstract

Restricted open-shell Hartree–Fock (ROHF) theory is formulated as a projected self-consistent unrestricted HF (UHF) model by mathematically constraining spin density eigenvalues. This constrained UHF (CUHF) wave function is identical to that obtained from Roothaan’s effective Fock operator. The and CUHF Fock operators are parameter-free and have eigenvalues (orbital energies) that are physically meaningful as in UHF, except for eliminating spin contamination. This new way of solving ROHF leads to orbitals that turn out to be identical to semicanonical orbitals. The present approach removes ambiguities in ROHF orbital energies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/14/1.3503173.html;jsessionid=_hQN9vGBY6GaKD7TJgw6Ejqe.x-aip-live-06?itemId=/content/aip/journal/jcp/133/14/10.1063/1.3503173&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/14/10.1063/1.3503173&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/14/10.1063/1.3503173'
Right1,Right2,Right3,