1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of around
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/133/15/10.1063/1.3493393
1.
1.B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, Nat. Chem. 2, 106 (2010).
http://dx.doi.org/10.1038/nchem.483
2.
2.L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009).
http://dx.doi.org/10.1088/1367-2630/11/5/055049
3.
3.J. -P. Uzan, Rev. Mod. Phys. 75, 403 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.403
4.
4.V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 99, 150801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.150801
5.
5.D. C. Robie and J. T. Hodges, J. Chem. Phys. 124, 024307 (2006).
http://dx.doi.org/10.1063/1.2145925
6.
6.M. Gupta, T. Owano, D. S. Baer, and A. O’Keefe, Chem. Phys. Lett. 418, 11 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.10.081
7.
7.M. Gupta, T. Owano, D. S. Baer, and A. O’Keefe, Chem. Phys. Lett. 441, 204 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.05.031
8.
8.T. I. Ivanov, M. Roudjane, M. O. Vieitez, C. A. de Lange, W. -U. L. Tchang-Brillet, and W. Ubachs, Phys. Rev. Lett. 100, 093007 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.093007
9.
9.O. Gabriel, J. J. A. van den Dungen, E. Roueff, H. Abgrall, and R. Engeln, J. Mol. Spectrosc. 253, 64 (2009).
10.
10.J. Liu, D. Sprecher, C. Jungen, W. Ubachs, and F. Merkt, J. Chem. Phys. 132, 154301 (2010).
http://dx.doi.org/10.1063/1.3374426
11.
11.W. Ubachs, R. Buning, K. S. E. Eikema, and E. Reinhold, J. Mol. Spectrosc. 241, 155 (2007).
http://dx.doi.org/10.1016/j.jms.2006.12.004
12.
12.T. Udem, R. Holzwarth, and T. W. Hänsch, Nature (London) 416, 233 (2002).
http://dx.doi.org/10.1038/416233a
13.
13.P. Maddaloni, P. Cancio, and P. De Natale, Meas. Sci. Technol. 20, 052001 (2009).
http://dx.doi.org/10.1088/0957-0233/20/5/052001
14.
14.G. Herzberg, Nature (London) 163, 170 (1949).
http://dx.doi.org/10.1038/163170a0
15.
15.B. P. Stoicheff, Can. J. Phys. 35, 730 (1957).
16.
16.P. J. Brannon, C. H. Church, and C. W. Peters, J. Mol. Spectrosc. 27, 44 (1968).
http://dx.doi.org/10.1016/0022-2852(68)90018-0
17.
17.M. A. Henesian, M. D. Duncan, R. L. Byer, and A. D. May, Opt. Lett. 1, 149 (1977).
http://dx.doi.org/10.1364/OL.1.000149
18.
18.E. C. Looi, J. C. Stryland, and H. L. Welsh, Can. J. Phys. 56, 1102 (1978).
19.
19.D. E. Jennings, A. Weber, and J. W. Brault, Appl. Opt. 25, 284 (1986).
http://dx.doi.org/10.1364/AO.25.000284
20.
20.A. R. W. McKellar and T. Oka, Can. J. Phys. 56, 1315 (1978).
21.
21.P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, Opt. Express 16, 8242 (2008).
http://dx.doi.org/10.1364/OE.16.008242
22.
22.G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000).
http://dx.doi.org/10.1080/014423500750040627
23.
23.M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc., Faraday Trans. 94, 337 (1998).
http://dx.doi.org/10.1039/a707686j
24.
24.J. -M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra (Elsevier, Amsterdam, 2008).
25.
25.A. Birnbaum and J. D. Poll, J. Atmos. Sci. 26, 943 (1969).
http://dx.doi.org/10.1175/1520-0469(1969)026<0943:QTITHH>2.0.CO;2
26.
26.J. L. Hunt, J. D. Poll, and L. Wolniewicz, Can. J. Phys. 62, 1719 (1984).
27.
27.G. Karl and J. D. Poll, J. Chem. Phys. 46, 2944 (1967).
http://dx.doi.org/10.1063/1.1841160
28.
28.K. Pachucki and J. Komasa, Phys. Rev. A 78, 052503 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.052503
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/15/10.1063/1.3493393
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Layout of the experimental apparatus: the OFCS-referenced DFG radiation is injected into a high-finesse optical cavity for CRDS of deuterium. The following legend holds: -cavity diode laser, -doped fiber amplifier, -doped fiber amplifier, lock, oscillator, unit, splitter, , mirror, synthesizer, poled lithium niobate, molecular pump, gauge, , and .

Image of FIG. 2.

Click to view

FIG. 2.

Absorption spectra of the S(0) (upper frame) and S(1) (lower frame) transitions. Experimental data points, recorded by CRDS at several pressure values, are fitted with standard Voigt profiles to extract the line-center frequency and the integrated absorbance.

Image of FIG. 3.

Click to view

FIG. 3.

Line-center frequencies (filled symbols) measured as a function of deuterium pressure for the S(0) line (upper frame) and for the S(1) one (lower frame). The intercept of a linear fit gives the zero-pressure transition frequency, while the slope yields the pressure shift. Early measurements (open symbols) by McKellar and Oka (Ref. 20) are also shown for comparison. In order to point out the Dicke narrowing effect, the full-width-half-maximum values are plotted against the gas pressure in the corresponding insets.

Image of FIG. 4.

Click to view

FIG. 4.

Integrated absorbance values against pressure for both the investigated transitions. Here, the slope of a linear fit to the data points is used to retrieve the line strength (see text).

Tables

Generic image for table

Click to view

Table I.

Measured values for the absolute frequencies, pressure shifts, and line strengths for the S(0) and S(1) transitions in the band of molecular deuterium.

Loading

Article metrics loading...

/content/aip/journal/jcp/133/15/10.1063/1.3493393
2010-10-21
2014-04-23

Abstract

The electric quadrupole fundamental band of molecular deuterium around is accessed by cavity ring-down spectroscopy using a difference-frequency-generation source linked to the Cs-clock primary standard via an optical frequency combsynthesizer. An absolute determination of the line position and strength is reported for the first two transitions ( and ) of the S branch. An accuracy of is achieved for the line-center frequencies, which improves by a factor 20 previous experimental results [A. R. W. McKellar and T. Oka, Can. J. Phys.56, 1315 (1978)]. The line strength values, measured with 1% accuracy, are used to retrieve the quadrupole moment matrix elements which are found in good agreement with previous theoretical calculations [A. Birnbaum and J. D. Poll, J. Atmos. Sci.26, 943 (1969); J. L. Hunt, J. D. Poll, and L. Wolniewicz, Can. J. Phys.62, 1719 (1984)].

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/15/1.3493393.html;jsessionid=2g1uqjob2knpn.x-aip-live-02?itemId=/content/aip/journal/jcp/133/15/10.1063/1.3493393&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/15/10.1063/1.3493393
10.1063/1.3493393
SEARCH_EXPAND_ITEM